
РЕСПУБЛИКАНСКИЙ НАУЧНО-ПРАКТИЧЕСКИЙ ЦЕНТР «ДАРЫН»

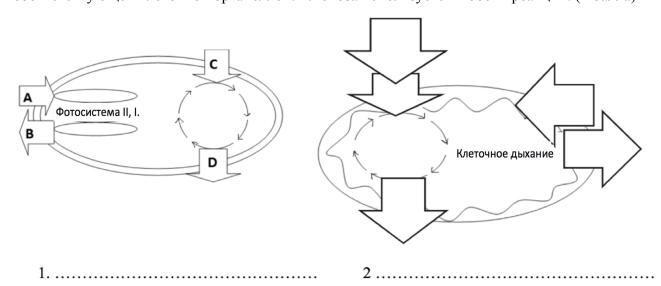
Областная олимпиада по биологии. Практический тур – 2017. 10 - 11 класс

В вопросах 1 и 2 используются следующие буквы, обозначающие один из отделов растений.

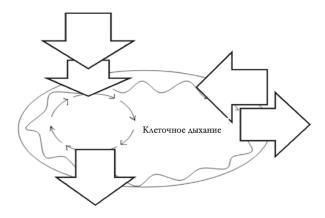
- А. Моховидные
- Б. Папоротниковые
- В. Голосеменные
- Г. Покрытосеменные
- 1. Ниже показан один из представителей каждого отдела растений. Впишите соответствующую букву в пустые коробки (4 балла)

2. Впишите соответствующую букву, обозначающую один из отделов растений, в ячейки рядом с утверждениями (5 баллов)

1.	У этих растений имеются цветы	
2.	Они размножаются используя распространение спор	
3.	Эти растения имеют фрукты	
4.	Семена образуются на открытых семенных чешуях	
5.	Пыльцевые зерна переносятся ветром	


- 3. Кроличий сыч показанный на рисунке живет в Америке, в то время как леопардовый геккон это рептилия обитающая в Средней Азии. Оба представителя животных в основном питаются насекомыми. Основываясь на свои знания и рисунки, сравните организмы относительно их структуры и образа жизни. Вставьте подходящие буквы в таблицу. (10 баллов)
- А. Кроличий сыч
- В. Леопардовый геккон
- С. Оба из них
- D. Ни один из них

Его тело покрыто кератиновой структурой кожи	
Размножается яйцами с мягкой скорлупой	
Размер зрачка контролируется мышцами радужной оболочки глаза.	
Он регулирует температуру тела (почти постоянная)	
Зрачок имеет вертикальную ориентацию.	
Дыхание через кожу играет важную роль в транспорте кислорода.	
Размножается яйцами с твердой, кальцифицированной скорлупой	
Использует внутреннее оплодотворение	
В пищевой цепи это первичный консумер.	
С широко перекрывающимися полями зрения; имеет превосходное	
пространственное зрение.	


4. У этого вопроса есть 11 подвопросов. (14 баллов) Напишите химическое уравнение фотосинтеза и биологического окисления под соответствующей клеточной органеллой. Глюкоза используется в обеих реакций. (2 балла)

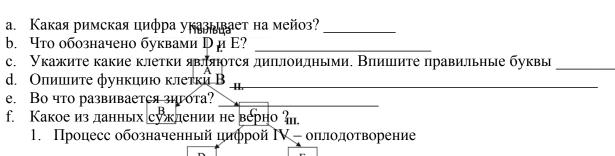
Определите химические соединения в уравнении соответствующие заглавным буквам внутри больших стрелок на диаграмме слева. Запишите химические соединения на пунктирной линии рядом с соответствующей буквой. Ответ для буквы D уже сделан для вас для примера. (3 балла)

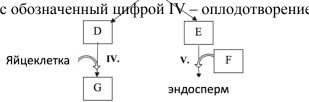
3) A:				 	 			
4) B:				 	 			
5) C:				 	 			
D:	C_6H	[₁₂ C) ₆					

6) Запишите химические соединения из уравнения в соответствующие пустые стрелки диаграммы. Одна из стрелок останется пустой. (4 балла)

Для подвопросов 7-11. Существуют 2 цикла химических реакций, действующих в хлоропластах и в митохондриях (показано маленькими стрелками на схемах). Запишите соответствующие буквы рядом с утверждениями о двух разных циклах. (5 баллов)

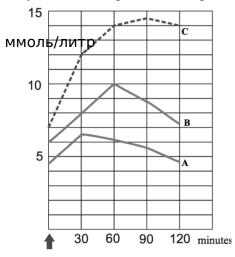
- А. Цикл Кребса
- В. Темновая фаза
- С. Оба из них
- D. Ни один из них


7)	В течение цикла атомы углерода от промежуточных продуктов	
	окисляются	
8)	Углекислый газ входит в этот цикл	
9)	Восстановленные НАДФН (NADPH) коферменты образуются в цикле	
10)	Происходит только в темное время суток	
11)	Происходит только в присутствии кислорода в клетках	


- **5.** Сравните и сопоставьте характеристики губок и плоских червей. Используйте соответствующую букву в своем ответе. (10 баллов)
- А. Губки
- В. Плоские черви
- С. Оба из них
- D. Ни один из них

1.	Они имеют переднюю и среднюю кишку	
2.	Они хемотрофы	
3.	Обычно они имеют пищеварительную систему с двумя отверстиями	

4.	Газообмен происходит путем диффузии по всей поверхности тела	
5.	Они размножаются бесполым путем почкования	
6.	Их глазки могут определить интенсивность и направление света	
7.	Они имеют поперечно-полосатую мышечную ткань	
8.	Они имеют псевдоткань	
9.	Группа включает паразитические виды	
10.	Их первичная кишка выстлана жгутиковыми воротничковыми клетками	
	(хоаноциты)	


- **6.** Теория эндосимбиотического происхождения митохондрий и хлоропластов была выдвинута Л. Маргулисом. (5 баллов)
- 6.1. Какие из следующих утверждении подтверждают эту теорию? (3 балла)
 - А. Митохондрии содержат ДНК
 - В. Хлоропласты окружены двойной мембраной
 - С. Крахмал образуется в хлоропласте
 - D. Митохондрии могит делится самостоятельно
 - Е. Процессы происходящие в хлоропластах циклические
 - F. Для фотосинтеза требуется свет
- 6.2. Если эндосимбиотическая теория верна, то мембрана бактерии это (2 балла)
 - А. Наружная мембрана митохондрии
 - В. Тилакоидная мембрана хлоропластов
 - С. Мембрана, образующая кристы у митохондрии
 - D. Наружная мембрана хлоропластов
 - Е. Мембрана ламелл хлоропластов
- **7.** Нижепредставленная диаграмма показывает различные фазы двойного оплодотворения у покрытосеменных. Изучите диаграмму и ответьте на следующие вопросы. (6 баллов)

- 2. Клетки эндосперма триплоидны
- 3. Мужские гаметы формируются в тычинках.
- 4. Первая клетка пыльцы образуется в тычинке
- 5. Мужские гаметы формируются в плодолистике.

8. Тест на толерантность к глюкозе является стандартным методом тестирования на диабет. Были исследованы образцы крови трех пациентов (A, B, и C). Каждый из них получил 1 г глюкозы на килограмм массы тела, в растворенном виде на голодный желудок. Далее, содержание сахара в крови каждого пациента измерялось в 30-минутном интервале. Результаты содержания сахара в крови представлены на графике. (8 баллов)

Основываясь на данных графика, какой пациент страдает диабетом (округлите букву)? (1 балл) А. В. С.

Является ли данное суждение верным: у пациента Б инсулин работает лучше, чем у пациента А. (1 балл) Верно. Не верно.

Что является причиной того, что уровень сахара в крови у пациента А достигает максимального уровня только после 30 минут? (1 балл)

d. Пациент А весит 80кг и имеет общий объем крови 5 литров. Ваша задача состоит в том, чтобы вычислить, какой процент от введенной глюкозы присутствует в плазме крови через 30 минут. Предположим, что вся введенная глюкоза попадает в кровь, и что не было никаких других факторов, влияющих на уровень глюкозы в крови. Покажите каждый шаг вашего расчета. Молярная масса глюкозы составляет 180г/моль. (3 балла)

- е. Что произошло с большей частью сахара, поглощенного пациентом А? (1 балл)
- f. Как можно объяснить снижение уровня сахара после 90 минут у пациента С? (1 балл)

9. Соотнесите термины и описания друг с другом (10 баллов)

Термины	Вставьте	Описания
	нужную букву	
Точечная мутация	Оукву	А. Удаление интронов из транскрипта
точечная мутация		пре-мРНК путем сшивания экзонов
Сплайсинг		В. Перенос двух разных видов молекул
Сплансип		растворенного вещества через мембрану
		в одном направлении
Сигнальная пептидаза		С. Изменение единственной
Сигнальная пентидаза		нуклеотидной пары или очень
		маленькой части гена в ДНК
Сигнальный участок		D. Сигнал сортировки белков, который
Chinasibilibili y lactor		представлен специфической трехмерной
		структурой на поверхности свернутого
		белка
Симпорт		Е. Фермент, удаляющий терминальную
Симпорт		сигнальную последовательность с белка
		после завершения процесса сортировки
Секвенирование		F. Протеаза, расщепляющая
Секвенирование		когезиновые белковые мостики,
		удерживающие вместе сестринские
		хроматиды
Сепараза		G. Фермент, расщепляющие
Ceriapasa		фосфодиэфирные связи в середине
		полинуклеотидной цепи
Саузерн-блоттинг		Н. Белок-переносчик,
		транспортирующий через мембрану
		одно растворенное вещество
Эндонуклеаза		І. Определение последовательности
- , 1 <i>y</i>		нуклеотидов или аминокислот в
		молекулах нуклеиновых кислот или
		белков
Унипорт		J. Метод, в котором разделенные
1		электрофорезом фрагменты ДНК
		иммобилизуют на нитроцеллюлозной
		мембране

10. Все из нижеследующих мутацией потенциально могут принести вред организму. Но вероятность вреда организму отличается в зависимости от типа мутаций. Ваша задача распределить вероятность возникновения вреда организму посредством мутаций от наиболее вероятного к наименее вероятному. (1- наиболее вероятный, 5-наименее вероятный) (5 баллов)

Вставка одного нуклеотида в конце кодирующей последовательности	
Делеция одного нуклеотида расположенного близко к началу	
кодирующей последовательности	
Делеция трех последовательных нуклеотидов в середине кодирующей	
последовательности	
Делеция четырех последовательных нуклеотидов в середине	
кодирующей последовательности	
Замена одного нуклеотида на другой в середине кодирующей	
последовательности	

11. Обозначьте галочкой каждое суждение как верное или не верное. (3.5 балла)

Суждения	верно	не верно
Каждая рибосома синтезирует только один вид белка		
Процесс трансляции требует формирования трехмерной		
структуры мРНК		
Обе субъединицы рибосомы всегда находятся в связанном к		
друг другу состоянии		
Рибосомы являются мембранной органеллой которые		
расположены в цитоплазме клетки		
Так как обе цепи ДНК являются комплементарными,		
транскрипт конкретного гена может синтезироваться с обеих		
цепей ДНК		
мРНК может иметь последовательность		
АТТГАЦЦЦЦГГТЦАА		
Количество белка в клетке зависит от скорости синтеза,		
каталитической активности и скорости деградаций данного		
белка		

12. Как мы знаем, генетический код был разгадан с помощью синтеза мРНК с повторяющимися последовательностями. Синтезированные данным путем мРНК затем были транслированы в белки. Весь процесс проходил в пробирке(in vitro). Последовательность аминокислот была анализирована и в результате это привело к расшифровке генетического кода.

В таблице мы предоставили разные последовательности мРНК. Ваша задача состоит в том, чтобы определить виды аминокислот, которые будут транслироваться с данных мРНК. Генетический код находится на последней странице. (3 балла)

Последовательность мРНК (5'→3')	Ожидаемые аминокислоты
ЦЦЦЦЦ	
ЦУЦУЦУ	
УУЦУУЦ	

единичный кодон мРНК	
тРНК	
ΑΜΦ	
ΑΤΦ	
мРНК кодирующая белок с	300 аминокислотой
Диаграмма ниже иллюстрирует струк знакомы. Решите задания основываяс	стуру мембраны, с которой вы должны быть сь на этой диаграмме. (4 балла)
На диаграмме изображены два основа	ных липида. Обозначьте их общие названия в
та диаграмме изооражены два основ: габлице. (2 балла)	ных липида. Ооозначьте их оощие названия в
Липид	Общее название
A B	
1 , 11	ецептор Ростового Фактора Нерва, который тьте на следующие вопросы (2 балла) птора.

15. Молодой ученый Тлеубек отправился изучать рыб, обитающих в озере Боровое. Ему приглянулись рыбы с ярко красным хвостовым плавником. Он понял, что это еще не описанный признак, и взялся его исследовать. Признак оказался аутосомным рецессивным, и весьма редким в популяции, только 4% всех рыб этого вида в озере имеют ярко красный плавник. Тлеубек дал гену имя *Т*.

Генетический код (иРНК)

Апфпреде основание	лите часто	ту <u>аллелей</u> Второе о	Третье основание		
	У	Ц	A	Γ	
	Фен	Cep	Тир	Цис	У
XI.	Фен	Cep	Тир	Цис	Ц
y	Лей	Cep	50 	D	A
	Лей	Cep	· ·	Три	Γ
	Лей	Про	Гис	Арг	У
**	Лей	Про	Гис	Арг	Ц
В. После	гого <mark>лка</mark> к Тл	еубекропис	ал н бвы й п	ризнакгрыб	ы в местном
журнал	пе, в Бо рово	ре п рире халі	и пр едс тав	ителирохран	ны редких фы
В целя	х со хра нені	ия р ⊪і́бы с р	едкимипри:	знаком, они	поймали и
увезли	131 ирыбу с	яркорюрасн	ным длавни	ком.СЕ6ли д	о приезда
	авителей о				
окрасо	м, толкаков	а новая час	тота <u>пенот</u>	<u>ипов</u> др ген	у <i>Т</i> ? (6 балло
8	Вал	Ала	Асп	Гли	У
г	Вал	Ала	Асп	Гли	Ц
1	Вал	Ала	Глу	Гли	A
	Вал	Апа	Глу	Гпи	Г