
3. пульс = 56 в мин, ударный объем = 120-76=44, минутный объем = 44 мл * 56 = 2464 мл

10. ответ – b

Солнечные лучи — источник энергии при фотосинтезе, и изменения в скорости фотосинтеза ($\Phi_{\rm H}$), вызываемые меняющейся интенсивностью облучения, относятся к основным характеристикам фотосинтетической деятельности растений. Зависимость $\Phi_{\rm H}$ от облучения выражается характерной кривой (рис. 11), которую обычно называют световой кривой или кривой освещения: расход ${\rm CO_2}$ в темноте (при дыхании) с постоянным возрастанием интенсивности освещения снижается и достигает нулевого значения в так называемой точке компенсации. Дальнейший рост интенсивности освещения вызывает почти линейное увеличение $\Phi_{\rm H}$. При низких величинах освещения использование лучевой энергии бывает максимальным, и в таких условиях она служит фактором, лимитирующим $\Phi_{\rm H}$. Во второй части кривой освещения происходит почти полное световое насыщение. В этих условиях скорость фотосинтеза ограничивается скоростью транспорта ${\rm CO_2}$ из окружающего растение воздуха в хлоропласты и скоростью ферментных реакций фиксации ${\rm CO_2}$. На рисунке 11 приведены величины $\Phi_{\rm H}$, характерные для растений типа ${\rm C_3}$ и ${\rm C_4}$.

11. растения C4 – I, светолюбивые C3 – II, глубоководные водоросли – IV, мхи – IV, теневыносливые C3 – III

12. A - I, B - III, C - II

13. в теле $5*10^{13}$, т.е. в общем расщепляется ($5*10^{13}$ клеток х 10^9 молекул $AT\Phi$) = $5*10^{22}$ в минуту.

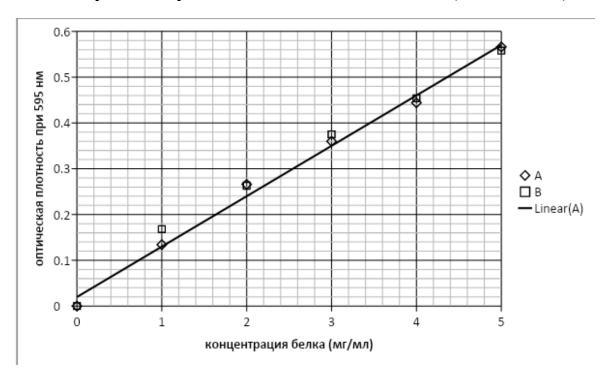
1 моль = $6,022*10^{23}$ молекул. Таким образом ($5*10^{22}/6,022*10^{23}$) = 0,083 Моля расщепляется в минуту, что равно (0,083 М х 12000 калорий) = 996 калорий в минуту. Переводим в Джоули: 996 калорий х 4,18 Джоулей = 4163,28 Джоулей в минуту. 4163,28/60 = 69,388 Джоулей в секунду = 69,388 Ватт.

- **14.** 1 литр = $1000 \text{ мл} = 1000 \text{ см}^3$.
- **A)** 5% пиво содержит 50 мл этанола в 1 литре пива. d=m/V, т.е. $m=dV=0.789 \times 50 = 39.45$ грамм этанола в 1 литре пива. n=m/MW=39.45/46=0.858 моль
- **Б)** 1% (масса/объем) раствор содержит 1 грамм в 100 мл, т.е. 10 г/литр. Норматив: 0.08% = 0.8 г/литр. n = m/MW = 0.8/46 = 0.0174 M = 17.4 mM.
- **B)** В одной бутылке пива содержится (39,45 грамм х 0,355 литра) = 14 грамм этанола или (0,858M х 0,355 литр) = 304,6 мМоль. В теле человека допустимо (0,8 грамм х 40 литров) = 32 грамма или (17,4

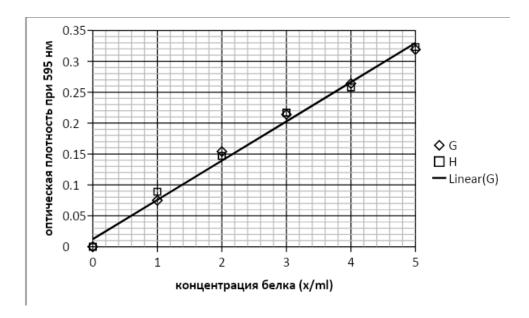
мМ х 40 литров) = 696 мМоль. Таким образом выпить получится только (32/14 или 696/304,6) = 2.28 = **2 бутылки пива**.

Г) скорость метаболизма этанола 120 мг/час*кг т.е. в 1 час метаболизируется 120 мг/кг. Если норма превышена в 2 раза, то в теле присутствует (32 грамма х 2) = 64 грамма. Нужно переработать только 32 грамма до нормы, т.е. (32 г /70 кг) = 457,7 мг этанола на кг веса. Это займет (457,1 мг / 120 мг) = **3,81 часа = 3 часа 48 минут**

15. Na+/K+ АТФаза – повышает, Na+ каналы – понижают, К+ каналы – повышают.


Потенциал покоя создается в основном за счет диффузии ионов K+ через K+-каналы наружу клетки, что при равновесии создает потенциал около -80mV. Диффузия ионов Na+ через Na+-каналы, если допустить достижения равновесия, стремится сместить потенциал в сторону +60mV. Разницу в концентрации этих ионов внутри и снаружи клетки поддерживается Na+/K+ АТФазами. Для экономии энергии эффективность диффузии Na+ составляет около 5% от диффузии K+, что приводит к конечному значению потенциала покоя к -70-73 mV.

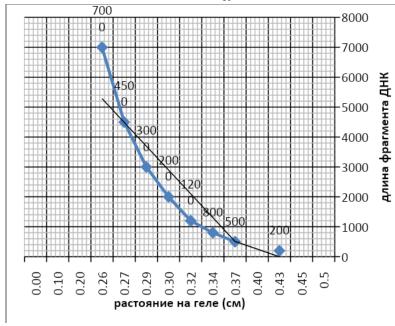
16. 1) P₁: AaBb x aabb; 2) частота рекомбинации = 13+13/ 376+13+13+373 = 0,0335 = 3,35%; 3) С-Е = 30%


18.
$$X5 - C$$
, $R12 - C$, $A2R - B$.

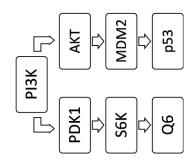
20.1. Концентрация разведенного БСА – 0, 1, 2, 3, 4, 5 мг/мл

20.2. Калибровочная кривая по БСА. С отниманием бланка (CBG без белка)

20.3. Калибровочная кривая по ферменту Х. С отниманием бланка (СВG без белка)



Концентрация фермента X - (0.5 мг x 5) = 2.5 мг/мл


21.1. Количество сайтов рестрикции: BamHI -1, PstI -1, HindIII - 1.

В 8 линии имеется только плазмида. В норме на агарозном геле при электрофорезе видны 3 полосы, относящиеся к 3 разным формам плазмиды. Самой низкой подвижностью обладает кольцевая молекула с одноцепочечным разрывом ("nicked"). Самой высокой подвижностью обладает суперспирализованная форма. Средней полосой идет линейная форма, т.е. разрезанная на 1 одном сайте рестрикции. По первым 3 линиям геля видно, что у каждого фермента есть только один сайт.

21.2 Расстояние на геле = 1/log₁₀(длина фрагмента ДНК)

- 21.3 PstI-HindIII около 1 kbp
- 21.4 HindIII-BamHI около 0,4 kbp
- 21.5 длина плазмида около 4 kbp

белок	функция						
	киназа	фосфатаза	убиквитин лигаза	неизвестно			
PI3K	+						
PDK1	+						
AKT		+					
S6K	+						
MDM2			+				
Q6				+			
p53				+			

23. NEM связывается со свободными сульфидными группами. На авторадиограмме можно увидеть только радиоактивно меченный NEM. В образовании дисульфидной связи участвует 2 остатка цистеина. В первом эксперименте можно увидеть только остатки цистеина, не участвующие в образовании дисульфидных связей. Таким образом во втором эксперименте видно, что у белков ретикулоцитов нет дисульфидных связей, в БСА максимальное число связей равно 18 и в инсулине – 3.

белки	кол-во дисульфидных связей
клеточные белки ретикулоцитов	0
БСА	18
инсулин	3

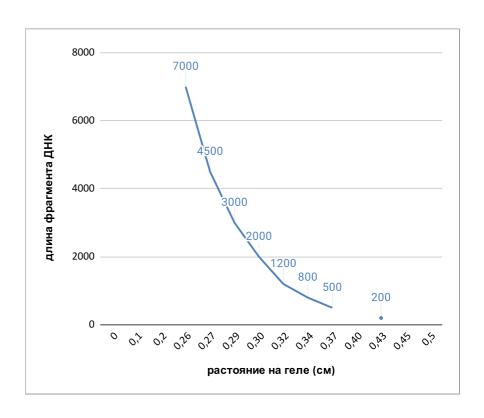
25.1.
$$A - 2$$
, $B - 1$, $B - 3$ 25.2. B)

27. A) cn
B) cn-b =
$$(105+102+5+4)/1800 \times 100 = 12 \%$$

cn-ch = $(40+41+5+4)/1800 \times 100 = 5\%$
ch-b = $16,4\%$
p(ch-b) = p(ch-cn)+p(cn-b)-p(ch-cn)*p(cn-b)=0,05+0,12-0,05*0,12=0,164

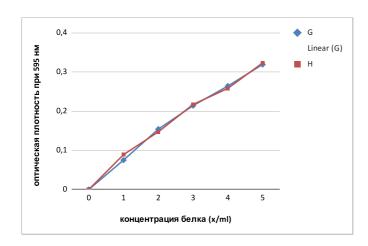
B)
$$c = 0.005/(0.05*0.12) = 0.83$$
 или $(4+5)/((1800/100)*(0.12*0.05))$

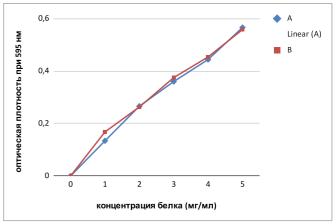
$$\Gamma$$
) $i = 1 - c = 1 - 0.83 = 0.17$


28.
$$a - g$$
, $b - G$, $c - g$, $d - G$, $e - G$, $f - g$.

Вроде были такие ответы, точно не уверен.

29. A) 3.2*10⁻¹¹ грамм/клетка


Б)
$$N=n*N_A=(m/MW)N_A=(3.2*10^{-11}/64500)*6,022*10^{23}=2,99*10^8$$


	markers	distance	
		0,5	
		0,45	
1	200	0,43	
		0,40	
2	500	0,37	
3	800	0,34	
4	1200	0,32	
5	2000	0,30	
6	3000	0,29	
7	4500	0,27	
8	7000	0,26	
		0,2	
		0,1	
		0	

blank	0	1	2	3	4	5
0,369	0	0,134	0,266	0,36	0,444	0,566
0,371	0	0,168	0,263	0,375	0,454	0,558
0,37	0	0,075	0,154	0,214	0,264	0,319
0.37	0	0.089	0.147	0.217	0.258	0.323

A B G H

