

All IBO examination questions are published under the following Creative Commons license:

CC BY-NC-SA (Attribution-NonCommercial-ShareAlike) -https://creativecommons.org/licenses/by-nc-sa/4.0/

The exam papers can be used freely for educational purposes as long as IBO is credited and new creations are licensed under identical terms. No commercial use is allowed.

4.3.2. Theoretical Test - Part B

CELL BIOLOGY

1. Deleted

2. Deleted
3. Deleted
4. In the left column below, you can see some proteins and in the right one there are some protein functions $(1-8)$. Match the functions with the proteins by writing their numbers in the blanks. (A protein may have more than one function) (7 points).

Dynein	1. Shows channel protein characteristics
$\mathrm{Na}^{+}-\mathrm{K}^{+}-$	2. Possesses ATPase activity
Nexin	3. Fasciliates transport through membrane
Connexon	4. Transport protein
Porin	5. Ion transport protein
Keratin	6. Attaches the microtubules
Desmin	7. Attaches Z bands to the myofibers in muscle
	8. Exists in the cytoskeleton of epithel cells

5.

A) (5') A GCCTAATGGCCTA (3')
B) (3') TCGGATTACCGGAT (5')

The DNA above is replicated in the direction of the arrow. Write the appropriate letter showing the templates for leading strand and lagging strand synthesis in the blanks. (2 points)
template for the lagging strand \qquad
template for the leading strand \qquad
6.

A suitable substrate for DNA polymerase is shown above. Fill in each blank below with a corresponding letter on the diagram. (3 points).

Primer
Template
3 ' end of the primer
5 ' end of the primer
3 ' end of the template strand
5^{\prime} end of the template strand
\qquad
-
\qquad
\qquad
\qquad
\qquad
7. Two molecules of DNA (I and II) are the same size (1000 bp) but differ in base composition. The first one contains 42% and the second one $66 \% \mathrm{~A}+\mathrm{T}$. (1.5 points).
A) How many G residues are there in DNA I and II? (1 point).

I: \qquad
II: \qquad
B) Which molecule (I or II) has a higher T_{m} ($\mathrm{T}_{\mathrm{m}}=$ dissociation point) (0.5 point)
8. Match the enzymes involved in the procaryotic replication at the left with their function at the right by putting the appropiate numbers in the blanks. (3 points).

DNA Helicase	1. Synthesis of RNA primers in the replication of the lagging strand
Primase	2. Unbinds double stranded DNA
DNA polymerase I $3 ' \rightarrow 5$ ' exonuclease activity \qquad	3. Removes RNA primers.
DNA Ligase	4. Seals nicks in the DNA at the boundaries between Okazaki fragments.
Topoisomerase II	5. Removes mismatched bases
DNA Polymerase I $5^{\prime} \rightarrow 3$ ' exonuclease activity \qquad	6. Releaves the topological stress produced by the unwinding of double stranded DNA.

9. Below is a diagram that shows DNA replication. On the diagram, mark: (5.4 points).
A) 3 ' ends with the letter " a " and 5 ' ends with the letter " b ", (2 points).

$B)$ The lagging strand with letter " A ", the leading strand with letter "B", Okazaki Fragments with letter "C", and RNA primers with letter "D". (1.4 points).

C) Match the enzymes with the reaction it catalyzes. Put the letter in front of the enzyme in the appropriate blanks below. (2 points).
E. Primase
F. Ligase
G. DNA Polymerase II
H. DNA Polymerase III
I. DNA Polymerase I

- Enzyme \qquad catalyzes the synthesis of fragment I
- Enzyme \qquad catalyzes the synthesis of fragment II
- Enzyme \qquad catalyzes the synthesis of RNA primer
- Enzyme \qquad seals the nick shown as III in the diagram

10. Compare RNA polymerase with DNA polymerase III that function in the transcription and replication processes in E. coli on the basis of the parameters $(\mathrm{A}-\mathrm{H})$ with their characteristics given in the table. Put the letters in the appropriate boxes. (5 points).
A) Promotor
B) Origin
C) $3^{\prime} \rightarrow 5^{\prime}$
D) $5^{\prime} \rightarrow 3^{\prime}$
E) dNTP
F) NTP
G) Yes (+)
H) No (-)

	RNA Polymerase	DNA Polymerase III
The DNA region initially recognized and bound by the polymerase		
The direction of the polymerization		
The direction of enzyme movement on the template strand		
The type of the nucleotide substrates added to the growing chain		
3' $\rightarrow 5$ ' exonuclease activity (Proof reading ability)		

11. Deleted

12. Deleted

13. For each of the following statements, indicate with a " P " if the statement applies only to prokaryotes, with an " E " if the statement applies only to eukaryotes, and with an "E-P" if the statement applies to both eukaryotes and prokaryotes. (2.7 points).
A single RNA polymerase transcribes genes that encode mRNA, tRNA and rRNA.
\qquad Polimerisation of DNA is in the $5 \rightarrow 3$ direction.
\ldots __ Sigma (σ) subunit detaches from RNA polymerase shortly after transcription has initiated
\qquad The 5' end of the mature mRNA begins with a triphosphate Polymerisation of RNA is in the $5 \rightarrow 3$ direction They carry circular DNA
There are no introns in mRNA
14. The template strand for mRNA is given below. (5 points).

(5') CTT TGA TAA GGA TAG CCC TT゙C (3')

A) What is the base sequence of the mRNA that can be transcribed from this strand?
B) Using the genetic code table given on the next page, write the amino acid sequence of the polypeptide coded by this mRNA.
C) Suppose the other (complementary) strand is used as a template for the transcription. What is the amino acid sequence of the resulting peptide?
D) If the labeled base above in the template strand is converted to " A " instead of " T ", what would be the type of the mutation? Transition (X), transversion (Y), deletion (Z) or insertion (W) Write the correct letter on the line below.
E) What is the type of this mutation? Neutral (N), silent (S), missense(M), or nonsense (NS)? Write the correct letter on the line below.

Report of the $11^{\text {th }}$ IBO in Antalya

$\begin{gathered} \text { BASE } \\ \text { I } \\ \hline \end{gathered}$	U	C		A		G		$\begin{gathered} \text { BASE] } \\ \text { II } \\ \hline \end{gathered}$
U	ItIt nhe	UCIt	ser	UAI	tvr	UTIT	cvs	I
U	UUC phe	UCC	ser	UAC	tyr	UGC	cys	C
U	UUA leu	UCA	ser	UAA	stop	UGA	stop	A
U	UUG leu	UCG	ser	UAG	stop	UGG	trp	G
r	Citit lent	crit	nro	CAIt	his	cait	ars	I
C	CUC leu	CCC	pro	CAC	his	CGC	arg	C
C	CUA leu	CCA	pro	CAA	gin	CGA	arg	A
C	CUG leu	CCG	pro	CAG	gin	CGG	arg	G
A	AIJU ile	ACIt	thr	AAI	asn	AGIt	ser	U
A	AUC ile	ACC	thr	AAC	asn	AGC	ser	C
A	AUA ile	ACA	thr	AAA	lys	AGA	arg	A
A	AUG met	ACG	thr	AAG	lys	AGG	arg	G
9	gilit val	GCIt	ala	gat	asn	GGIt	olv	I
G	GUC val	GCC	ala	GAC	asp	GGC	gly	C
G	GUA val	GCA	ala	GAA	glu	GGA	gly	A
G	GUG val	GCG	ala	GAG	glu	GGG	gly	G

15. Deleted

16. Deleted
17.

A) The heart muscle while working aerobically
B) A bacterium culture that cannot grow in the dark
C) A propionic acid bacteria that can grow under anaerobic conditions in the dark
D) Erythrocytes

Fill in the blanks with the suitable letters above.(2 points)
\qquad provides ATP requirement by photosynthesis
\qquad provides ATP requirement by converting glucose to lactate
\qquad provides ATP requirement by fermentation
\qquad provides ATP requirement by oxidative phosphorylation
18. Atmospheric nitrogen $\left(\mathbf{N}_{2}\right)$ is chemically very stable. Only a few prokaryotic species can convert atmospheric nitrogen into usable form by plants. One of the characteristics of these organisms is that they possess the nitrogenase enzyme complex that can fix the nitrogen. O_{2} irreversibly inhibits this enzyme. Considering that we live in an oxidizing environment, nitrogen fixing organisms must have a variety of mechanisms for protection from O_{2}.
A) Below are given some characteristics of bacteria. Put an " X " in the blank for the ones that can fix nitrogen. (4 points). A free living bacterium under soil like Clostridium Cyanobacteria like Nostoc muscorum possess thick cell walls Bacteria like E.coli that are inhabitants of the intestinal tract Symbiotic bacteria like Rhizobium of leguminous plants that possess specialized protein leghemoglobin
\qquad High mutation rate bacteria like Salmonella typhimurium
B) Which is the major product of the nitrogenase enzyme complex? (Mark with an "X")
\qquad ammonia \qquad nitrite \qquad nitrate \qquad nitrogen gas

GENETICS AND EVOLUTION

19. Consider cases of unknown paternity where the ABO blood group phenotype of concerned individuals is to be used to help identify fathers. The frequency of blood group allels in the population is as follows: $p(A)=0.2, p(B)=0.3, p(O)=0.5$. Blood group assessments are made by routine laboratory procedures, which can assess blood group phenotypes. (4 points)
a. In a case where the mother`s blood group is A and the child's blood group is $A B$, what is the probability that a man chosen at random from the population will be proven not to have fathered the child purely on the basis of his blood group. (2 points)

Answer:

\qquad
b. In a case where the mother's blood group is A and the child's blood group is O, what is the probability that a man chosen randomly from the population will be proven not to have fathered the child purely on the basis of his blood group. (2 points)

Answer: \qquad
20. In a certain human population 64% is able to roll their tongue.

This ability is based on a dominant allele.
A roller marries a non-roller.
Calculate the chance of having a roller baby. (4 points)
Answer: \qquad \%
21. Deleted
22. In peas, the allele for green seed color (A) is dominant over the allele for yellow seed color (a) and the allele for normal leaf (B) is dominant over the allele for rolled leaf (b). The F_{1} generation is obtained by crossing AABB x aabb. When these F_{1} plants are tested again, the following results are found;

117 green seed / normal leaf
115 yellow seed / rolled leaf
76 green seed / rolled leaf
80 yellow seed / normal leaf
$\chi^{2}=\sum\left[(O-E)^{2} / E\right]$
O: Observed value E: Expected value (6 points)
A) Degree of freedom: \qquad
B) Calculate the χ^{2} value and check from the table: \qquad
C) According to the result of choice B, decide whether these genes are linked or not (mark with the letter " X ")

Genes are linked: \qquad
Genes are not linked: \qquad
D) If these genes are linked, calculate the distance between the genes

The distance between the genes is \qquad map units
23. (2.5 points).

According to the structure and the location of the light sensors illustrated on the scheme above, match the followings

Animal group

\qquad Earthworm
\qquad Squid
\qquad Human being
\qquad Insect
\qquad Planaria

PLANT ANATOMY AND PHYSIOLOGY

24. (2 points)

The graph represents the water conductivity of a root. Mark the true alternative(s) with an " X ".
___A) The temperature decreases between the phases 1-2 and 4-5
__B) CN^{-}is added to the medium between the phases $0-1$ and 2-4
___C) There is enough oxygen between the phases 1-2 and 4-5
___D) The root cannot get enough nutrient between the phases 1-2 and 45
25. (3.6 points)

RF : red or white flash
FRF: far red flash
The figure represents exposure of long-day and short-day plants to a variety of light regimes. Decide whether long-day (short-night) and short-day (long-night) plants will flower (+) or not (-) under the conditions given above.

	Long day (short-night) plant	Short-day (long-night) plant
A)		
B)		
C)		
D)		
E)		
F)	II	

26. Deleted
27. Deleted
28. Deleted
29. Deleted
30. Label the figure using the numbers (2.1 points)

01 Anther	05 Phyllary
02 Ovarium	06 Nectar
03 Stigma	07 Pappus
04 Corolla	

\square
31. A student is studying a tundra plant at different temperatures. He investigates:

The production of oxygen by means of photosynthesis, and
The net amount of oxygen released into the environment The diagram shows the results. It is up to you to decide which curve is production and which curve is release. (2 points)
oxygen production \& release of a tundra plant

Now answer the following two questions:
31.1. At which temperature(s) are both the ATP-production and the ATP-consumption approximately equal? (1 point)
___A) At $20^{\circ} \mathrm{C}$
__B) At $-2,5^{\circ} \mathrm{C}$ and at $+40^{\circ} \mathrm{C}$
___C) Only in between $-10^{\circ} \mathrm{C}$ and $-2,5^{\circ} \mathrm{C}$
D) Only in between $-10^{\circ} \mathrm{C}$ and $+10^{\circ} \mathrm{C}$
___E) In between $-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$
31.2. At which temperature(s) are the production of oxygen by photosynthesis and the consumption of oxygen by dissimilation equal to each other? (1 point)
___A) At $20^{\circ} \mathrm{C}$
B) At $-2,5^{\circ} \mathrm{C}$ and at $+40^{\circ} \mathrm{C}$
___C) Only in between $-10{ }^{\circ} \mathrm{C}$ and $-2,5^{\circ} \mathrm{C}$
___D) Only in between $-10{ }^{\circ} \mathrm{C}$ and $+10^{\circ} \mathrm{C}$
___E) In between $-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$
32. Select numbers from the answer key and mark the parts of the different fruit types (3 points)

Answer key:
1- Remains of sepals
2- Receptacle
3- Seed
4- Placenta
5- Pedicel

33. Deleted
34. Deleted
35. Which of the following can be expected to happen when glucose is added to the mineral solution in which plant cells are bathed. Put a cross (X) in the related boxes.
35. 1. (1 point)

	Increases	Decreases
Membrane potential		
pH of the medium		

35.2 (1 point)

	Taken up	Not taken up
Glucose		

BIOSYSTEMATICS

36. Deleted

37. Deleted
38. Which of the following descriptions about vertebrates is/are correct? Mark the correct ones with an "X". ($\mathbf{2} .5$ points)
____ The scales of fish are epidermal scales
____The scales of snakes are epidermal scales
___ The scales of lizards are epidermal scales
____The scales of pangolins are epidermal scales
___ The hairs of humans are derivatives of epidermis
___ The horns of deers are epidermal in origin
___ The horns of cattles are epidermal in origin
___ The horns of rhinoceros are epidermal in origin

39. Deleted

40. Deleted

41.	I. Rhynia	II. Spirogyra	III. Rhizopus/Mucor
	IV. Lycopodium	V. Equisetum	

Establish the relationships between the given genera names above with the terms below (You can use any term more than once.) (3.6 points).
___ It appeared in the Carboniferous period
___ The sporangia are generally cluster shaped
___ The zoospores never appear
___ The oldest plant that has no leaves
___ The first real roots are seen in this group
____ The prothallus_reaches sexual maturity in 12-15 year's time
___ The chloroplasts are helozonic (spiral shaped)
___ Xylem is made of ringed and spiral tracheids
$\ldots \ldots$ In the cross section, the xylem appears star or plate shaped
42. Deleted

ANIMAL ANATOMY AND PHYSIOLOGY

43. Some animals and some of their characteristics are shown in the table . Match these characteristics correctly with the given animals (mark the appropriate box with an " X ") (3.6 points).

Drinks water regularly							
Does not drink water							
Wastes are discarded as ammonia							
Wastes are discarded as urea							
Wastes are discarded as uric acid							
Actively secretes salt							
Actively absorbs salt							
Excretes hipotonic urine reative to the body fluids							
Excretes isotonic urine relative to the body fluids							
Excretes hipertonic urine reative to the body fluids							

Report of the $11^{\text {th }}$ IBO in Antalya
44.

In the figure, some parts of a mammalian nephron are numbered (IV). Match these numbers with the events or properties given in the table (a number can be used more than once). (2.5 points).

Cl^{-}is actively pumped out	
Blood is filtered	
Almost all glucose is reabsorbed	
Urine becomes acidic	
Na^{+}is reabsorbed under aldesterone control	

45. In humans, some mechanisms are activated in the case of a serious decrease in the red blood cell count. Some sources (organs/tissues), secreted substances, targets and biological responses are given in the list (1-13). Examine them and put appropriate numbers in the appropriate boxes in the table. (2 points).
46. Liver
47. Kidneys
48. Heart
49. Erythopoeitin
50. Lungs
51. Spleen
52. Bone marrow
53. Antidiuretic hormone
54. Renin
55. Androgens
56. Adrenaline
57. Increase in erythropoiesis
58. Increase in the blood glucose level

Stimulus	Stimulated organ/tissue	Secreted Substance	Target	Biological Response
Decreased red blood cell count				

46. Deleted
47. In the figure, 4 parameters varying according to the different parts of the human circulation system (aorta, arteries, arterioles, capillaries, venules, veins, and vena cava) are plotted (I-IV). Match the numbers of the curves with the parts of the circulation system (Put the appropriate number in front of each part.). (2 points).
\qquad Total cross-sectional area
\qquad Blood pressure
\qquad Blood velocity
\qquad Vessel diameter
48. Inspect the following scheme representing the blood circulation of a human embryo just before birth. The numbers respresent the blood flow in $\mathrm{ml} / \mathrm{min}$ per kg body mass of the embryo. (2 points).

49. 50. Indicate the letter of the box which represents the placenta. (1 point).

Answer: \qquad (fill in a letter)
48. 2. Calculate the ratio of blood flow through the lungs just before and few days after the birth, assuming that the total amount of blood leaving the heart at both are equal. (1 point).

Answer: (Ratio) Before $/$ After $=$ \qquad
49. In the human circulation various mechanisms are activated when blood pressure decreases below or rises above its normal level. This question is related to a situation where the blood pressure exceeds its normal level. Indicate the events that take place at various parts of the circulation system to return the pressure back to its normal level by marking the appropriate boxes in the table with an " X " . (3 points).

Stretc		Cardioaccelatory center		Cardioinhibitory center		Vasomotor center	
	$$	告			$\begin{aligned} & \text { E. } \\ & \text { 咅 } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & \dot{E} \\ & \text { E. } \\ & \stackrel{\rightharpoonup}{\nabla} \end{aligned}$

Cardiac output		Arterioles	
increases	decreases	constricted	dilated

50. Deleted
51.

Tissue cells

The figure shows the reactions occuring during gas and electrolyte exchange between blood capillaries loaded with O_{2} and the tissue cells. Fill in the empty boxes in the figure and below with the appropriate numbers out of the 13 substances given below. (3.5 points).

52. The respiratory quotient $R Q$ of an organism is defined as $R Q=\mathrm{CO}_{2}$ (produced) $/ \mathrm{O}_{2}$ (used)(in a given time)
The theoretical RQ values of important substrates are approximately:

substrate (completely oxidised)	RQ
Carbohydrate	1,0
Fat	0,7
Protein	0,9

In practice, the values of $R Q$ will be higher or lower than the theoretical ones.

What is the effect of the following circumstances on RQ? (2 points).
Put an " X " in the correct boxes in the following table.

	RQ higher	RQ lower
Anaerobic respiration of substrate		
Incomplete oxidation of substrate		
Fixation of CO_{2} as CaCO_{3}		
Converting carbohydrate into fat		

53. Figure shows 5 saturation curves of $\mathrm{O}_{\mathbf{2}}$ with hemoglobin each obtained from a different animal (I-V). The shape of these curves differ according to the basal metabolism of the animal. Match these curves with the animals given below (Put the number of the curve in front of the name of the animal.) (2.5 points).
\qquad Elephant \qquad Snake \qquad Bird (sparrow)
\qquad Man
\qquad Mouse
54. Mark the correct change in the arterial chemoreceptors, respiratory rate, H^{+}excretion rate in the kidneys and blood partial CO_{2} pressure that takes place in order to correct a drop in blood pH . (2 points).

Arterial chemoreceptors		Respiratory rate	
stimulation	inhibition	increase	decrease

H^{+}excretion in the kidneys		Blood partial CO_{2} pressure	
increase	decrease	increase	decrease

55. Write the numbers which refer to the extra-embryonic membranes amnion (1), allantois (2), yolk-sac (3) and chorion (4) that are seen during the development of organisms given below. (1.4 points)

Fish
Frog \qquad
Reptile \qquad
Bird \qquad
Mammal
56. The following statements are about calcium and its regulation in humans. Match correctly the substances given in the answer key with the statements (put the letter of the substance in front of the statements). (2 points).
It is the vitamin which promotes the accumulation of calcium in the body
\qquad It is the gland which secretes calcitonin, the hormone causes calcium accumulation
\qquad It is the the place where calcium accumulates in great amounts in the body
\qquad It is the gland which secretes hormone that increases the calcium level in the blood

Answer key:
A. Vitamin D
B. Bones
C. Thyroid
D. Blood
E. Parathyroid gland
F. Vitamin C
G. Adrenal gland
57. Some human endocrine and exocrine glands are numbered in the figure. In the following statements some functions related to these glands are given. Match the statements with the glands in the figure (Put the number of the gland in front of the statements). (3 points)
\qquad It secretes a hormone which increases the reabsorption of Na^{+}into the blood
\qquad Its secretion is increased when blood Ca^{2+} concentration drops below its normal level
\qquad If its secretion is decreased the basal metabolic rate also decreases
\qquad Its secretion is necessary for the development of cellular immunity
\qquad Its hormone induces red blood cell production in bone marrow
\qquad Without its hormone, there will be an excessive water loss from the body
\qquad Its secretion is increased after a carbohydrate rich meal
\qquad Acidic compounds stimulate its hormone secretion
\qquad Its secretion is necessary for the chemical breakdown of proteins

58. Deleted

59. Deleted
60. Deleted

ECOLOGY

61. Deleted

62. A food web including 6 different species (A to F) in an ecosystem is shown in the figure illustrated below. The arrows refer to the energy flow directions. Match the following according to that figure. (3.5 points).

Producer species
Decomposer species
Consumer species on the first trophic level
Consumer species on the second trophic level
Consumer species on the third trophic level
The species in which biomagnification is seen at the highest level

Report of the $11^{\text {th }}$ IBO in Antalya
63. Age distribution in human populations can be shown in three different types as developing type, stable type and regression type. Mark the stable type age distribution among the following figures. (1 point).
64. In the tables below, one might see the relationships among the populations and the results of these influences. Mark the correct answer(s) by an ellipse in each box. For clarity, an example has been given for competition. (3.5 points).

Report of the $11^{\text {th }}$ IBO in Antalya
65. In the figure illustrated below the energy flow between the organisms on different trophic levels in a food web is shown. On the scheme given below, please fill in the blanks with the numbers given below for the producers, and $1^{\circ}, 2^{0}, 3^{0}$ trophic level consumers according to their levels. (3.6 points).

Producers
2^{0} consumers \qquad
1^{0} consumers
3^{0} consumers \qquad

66. Deleted

67. The figure given below represents the carbon cycle. Fill in the blanks with the suitable numbers that corresponds to the processes concerning the cycle given to you. (2 points).

Processes:

Combustion
Consumption
Death
Photosynthesis
Respiration
Decomposition
68. In the table, the principle components that form an aquatic ecosystem are given. Put the organisms, and components, in their places in the table given below. (2 points).
I. Fungi
II. Phytoplankton
III. Inorganic components
IV. Zooplankton

The part of the ecosystem	The organism or component
Abiotic substance	
Producer	
Consumer	
Decomposer	

69. Deleted
70. The density of a population that reaches equilibrium is known as the carrying capacity in that species for that habitat. When a population approaches the carrying capacity of any habitat, which of the following shows a tendency to increase? Mark all correct answers with an " X ". (2.5 points).
\qquad Competition for resources
\qquad Competition for shelters
\qquad Competition for mating areas
\qquad Immigration
\qquad Accumulation of toxic wastes
71. In any habitat that includes a predator species and its prey, it is known that both of their populations show linked fluctuations. Show the curve belonging to the predator species by putting an " X " in the circle. (1 point).

Time

BEHAVIOUR

72. Thorleif Schjelderup- Ebbe reported the results of a study about the social organization carried out in a poultry yard with Leghorn hens. He found that there was a kind of order (arrangement) in the peck that was related with a real hierarchy in the group.

The following matrix shows the peck frequency within a group of 13 females (from A to M). Each datum indicates the times that the hen identified by the letter in the horizontal line is pecked by one in the vertical line. (4 points)

	M	L	K	J	I	H	G	F	E	D	C	B	A
A	53	45	38	51	35	36	41	29	33	34	41	39	-
B	42	34	37	28	36	29	40	46	43	53	47	-	-
C	36	29	26	44	31	38	24	42	37	32	-	-	-
D	35	27	39	29	36	52	43	31	26	-	-	-	-
E	48	30	27	43	41	40	36	35	-	-	-	-	-
F	43	39	42	40	39	33	31	-	-	-	-	-	-
G	39	38	28	36	41	39	-	-	-	-	-	-	-
H	35	52	47	-	37	-	-	-	-	-	-	-	-
I	37	41	42	54	-	-	-	-	-	-	-	-	-
J	33	29	31	-	-	32	-	-	-	-	-	-	-
K	42	37	-	-	-	-	-	-	-	-	-	-	-
L	39	-	-	-	-	-	-	-	-	-	-	-	-
M	-	-	-	-	-	-	-	-	-	-	-	-	-

72.1. Which of the following female has the highest hierarchy within the group? (2 points)
__A) A
B) B
C) J
D) H
E) M
72.2. Deleted

72.3. Deleted

72.4. Which ones of the following may be the advantages of a hierarchy of dominance? (2 points).
___A) To suppress the aggression.
__B) To diminish the time and the energy invested in fights.
\qquad C) To diminish the mortality of individuals because of the wounds caused in the combat
D) A and B.
___E) All the above
73. The "coefficient of relatedness" (\mathbf{r}) between various kin pairs that changes according to the relationships in any diploid animal ((For example a mammalian like Canis lupus (Canidae)) is given in the table below. (3.5 points).

Parent $<>$ Offspring	0.50
Identical twins	1.00
Grandparent $<>$ Grandchild	0.25
First cousins	0.125
Uncle $<>$ nephew	0.25

73.1. In view of this, in a haplodiploid bumblebee species Bombus terrestris L, 1758 (Apoidea: Hymenoptera), show the coefficient of relatedness (r) in the situations given below. (2.5 points).

Mother $<>$ Daughter
Father $>$ Daughter \qquad
Mother $<>$ Son
Sisters
\qquad

Brothers \qquad
73.2. If you take into consideration the knowledge given in the table above, which of the following statements about the sterilization of the worker bees given as I, II, III and IV is true? (1 point).

I- For the transmission of the genetic knowledge to the next generation, the sterilization of the worker bee, is harmful for it.

II- For the transmission of the genetic knowledge to the next generation, the sterilization of the worker bee, is benefical for it.

III- For the transmission of the genetic knowledge to the next generation, there is no difference on the individual level.

IV- This is an example of altruism.
___A) Only I
\qquad B) Only IV
\qquad C) II and III
__D) II and IV
___E) III and IV

4.4.2. Part B Answer Key

1. Deleted
2. Deleted
3. Deleted
4.

$\underline{2}, \underline{6}$
$\underline{2}, \underline{3}, \underline{4}, \underline{5}$
$\underline{6}$
$\underline{1}, \underline{3}, \underline{5}$
$\underline{1}, \underline{3}, \underline{5}$
$\underline{8}$

5.

A
B
6.

A
B
C
E
D

F
7.
A) I: $\underline{580}$, II: $\underline{340}$
B) I
8.

DNA Helicase \qquad

Primase \qquad 1

DNA polymerase I
$3^{\prime} \rightarrow 5$ ' exonuclease activity 5

DNA Ligase \qquad 4

Topoisomerase II 6

DNA Polymerase I
$5^{\prime} \rightarrow 3$ ' exonuclease activity \qquad 3
9.
A)

Theoretical Test - Part B

B)

C)

\underline{H}
\underline{H}
\underline{E}
\underline{F}

10.

\underline{D}	\underline{D}
\underline{C}	\underline{C}
\underline{F}	\underline{E}
$\underline{\mathrm{H}}$	$\underline{\mathrm{G}}$

11. Deleted
12. Deleted
13.

14.
A) 5'GAA GGG CUA UCC UUA UCA AAG
B) Glu-Gly-Leu-Ser-Leu-Ser-Lys-
C) Leu-stop-stop
D) $Б$
E) H
15. Deleted
16. Deleted
17.

B
D
C
A
18.

19.
a. 0.49
b. 0.25
20.
$5 / 8$ or 62.5%

21. Deleted

22.

A) 3
B) 14.98 or $15.0>7.815-387.45$ or $387>7.815$
C) Genes are linked
D) Deleted
23.

24.

A, D
25.

A)	+	-
B)	-	+
C)	+	-
D)	-	+
E)	+	-
F)	-	+

26. Deleted
27. Deleted
28. Deleted
29. Deleted
30.
31.

31.1. E
31.2. B
32.

33. Deleted

34. Deleted

35.

35.1.

	Increases	Decreases
Membrane potential	X	
pH of the medium	X	

35. 2.

	Taken up	Not taken up
Glucose	X	

36. Deleted
37. Deleted
38.

41.

V
III
II
I
IV
IV
II
$\underline{\text { I }}$
$\underline{\text { IV }}$

42. Deleted
43.

Drinks water regularly		X	X			X
Does not drink water	X			X	X	X
Wastes are discarded as ammonia	X		X			
Wastes are discarded as urea					X	X
Wastes are discarded as uric acid		X		X		
Actively secretes salt			X			
Actively absorbs salt	X					
Excretes hipotonic urine relative to the body fluids	X					
Excretes isotonic urine relative to the body fluids			X			
Excretes hipertonic urine relative to the body fluids		X		X	X	X

44.

$\underline{\mathrm{II}}$
$\underline{\mathrm{I}}$
$\underline{\mathrm{III}}$
$\underline{\mathrm{IV}}$
$\underline{\mathrm{V}}$

45.

Stimulus	Stimulated organ/tissue	Secreted substance	Target	Biological Response
Decreased red blood cell count	2	4	7	12

46. Deleted
47. IV

I
III
II
48.1. G
48.2. 1:7
49.

Stretch receptors		Cardioaccelatory center		Cardioinhibitory center		Vasomotor center	
			$\begin{aligned} & \text { E. } \\ & \text { 宽 } \\ & \text {. } \end{aligned}$	苟	E.		
X			X	X			X

Report of the $11^{\text {th }}$ IBO in Antalya

Cardiac output		Arterioles	
increases	decreases	constricted	dilated
	X		X

50. Deleted
51.

1	3	2	13	11	1	8
I	II	III	IV	V		V

52.

RQ higher	RQ lower
X	
	X
	X
X	

53.

$\underline{\text { II }}$
$\underline{\mathrm{V}}$
$\underline{\text { IV }}$
$\underline{\text { III }}$
$\underline{\mathrm{I}}$

54.

Arterial chemoreceptors		Respiratory rate	
stimulation	inhibition	increase	decrease
X		X	

H^{+}excretion in the kidneys		Blood partial CO_{2} pressure	
increase	decrease	increase	decrease
X			X

55.

3
\qquad
1, 2, 3, 4
1, 2, 3, 4
1,2,3,4
56.

\underline{A}
C
\underline{B}
\underline{E}

57.

5
근
2

4
$\underline{9}$
1
7
8
6
58. Deleted
59. Deleted
60. Deleted
61. Deleted
62.

$\underline{\mathrm{A}}$
$\underline{\mathrm{E}}$
$\underline{\mathrm{B}}, \underline{\mathrm{D}}$
$\underline{\mathrm{C}}$
$\underline{\mathrm{F}}$
$\underline{\mathrm{F}}$

63.
64.

Competition	
Species	
A	B
-	-
+	-
0	0
+	+
+	0
-	0

Predation	
Species	
A	B
-	-
+	-
0	0
+	+
+	0
-	0

Parasitism
A $\frac{\text { Species }}{\mathrm{B}}$

-	-
+	-
0	0
+	+
+	0
-	0

Commensalism Species A B $\begin{array}{ll}- & - \\ + & -\end{array}$
$0 \quad 0$
$\begin{array}{ll}+ & + \\ + & 0\end{array}$
$+\quad 0$

Amensalism
$\frac{\text { Species }}{A}$

-	-
+	-
0	0
+	+
+	0
-	0

Report of the $11^{\text {th }}$ IBO in Antalya

65. $\underline{12}$
$\underline{7}, \underline{8}, \underline{9}, \underline{10}, \underline{11}$
$\underline{1}, \underline{2}, \underline{3}, \underline{4}, \underline{5}, \underline{6}$
$\underline{1}, \underline{2}, \underline{3}, \underline{5}$
66. Deleted
67. $\underline{9}$

3
4,5,7
1
2,8,10
6
68. III

II

IV

I
69. Deleted
70. _ X_
\qquad
_ X_
\qquad
71. N 2
72.1. A
72.2. Deleted
72.3. Deleted
72.4. E
73.1. $\underline{0.50}$
1.00
$\underline{0.50}$
$\underline{0.75}$
$\underline{0.50}$
73.2. D

