

All IBO examination questions are published under the following Creative Commons license:

CC BY-NC-SA (Attribution-NonCommercial-ShareAlike) - https://creativecommons.org/licenses/by-nc-sa/4.0/

The exam papers can be used freely for educational purposes as long as IBO is credited and new creations are licensed under identical terms. No commercial use is allowed.

10th International Biology Olympiad

Theoretical test 1999-07-08

The theoretical test is composed of three parts:

In part A, all questions are multiple choice questions with one and only one correct answer. You always mark the correct answer with a cross (X) on the line in front of it.

In part B, all questions are multiple choice questions, but in each question any number among the answers may be correct. Thus, there may be only one correct answer, or several, or all answers may be correct. You must mark exactly and only those answers that are correct. You always mark the correct answers with a cross (X) on the lines in front of them.

In part C, the questions are constructed in various ways, and you have to read for each question how the answer is to be given. Often you answer by writing one or a few digits or characters, and then these must be distinct and legible, otherwise your answer will not be judged as correct.

Surname	First name
Country	Code number

10th International Biology Olympiad

Theoretical test 1999-07-08

Part A

In this part, all questions are multiple choice questions with $\underline{\text{one}}$ and $\underline{\text{only one}}$ correct answer.

You always mark the correct answer with a cross (X) on the line in front of it.

Cell Biology, Microbiology & Biotechnology

1. Almost all cells in an animal contain the same genes. The cells are different in structure and function
because they synthesize different
(1p)
A tRNA molecules.
B mRNA molecules.
C histones.
D ribosomes.
2. Vesicles from the smooth endoplasmatic reticulum most likely are on their way to the
(1p)
A rough endoplasmatic reticulum.
B lysosomes.
C Golgi apparatus.
D plant cell vacuole.
D plant con vacaoic.

3. In the thylakoid membranes of the chloroplast there are two photosystems, PS I and PS II.
3a. Are both of these photosystems associated with light harvesting pigments?
(1p)
A. Yes both.
B. Only PS I.
C. Only PS II.
3b. The splitting of water results in three products: oxygen, protons and electrons. Which of these are
used in the photosynthetic light reaction?
(1p)
A. All three of them.
B. Oxygen and protons.
C. Protons and electrons.
D. Oxygen and electrons.
E. Only electrons.
3c. Some photosynthetic and anaerobic bacteria do not split water but another compound instead. Which
compound?
(1p)
A. Hydrogen sulfide, H ₂ S.
B. Methane, CH ₄ .
C. Sodium sulfate, Na ₂ SO ₄ .
D. Ethylene, C_2H_4 .

		(lp)
	A. Mitosis.	
	B. Division of the cytoplasm.	
	C. Cytoplasmic streaming during interphase.	
	D. Cell crawling.	
	E. Flagellar locomotion of a sperm.	
5. In w	which order do the following processes take place during mitosis in animals and	plants?
		(1p)
I	The nuclear envelope breaks down.	
II	The chromosomes move to the middle ("equator") of the spindle.	
Ш	Microtubules attach to kinetochores.	
IV	Daughter chromosomes move apart.	
	A: I, II, III, IV	
	B: II, III, I, IV	
	C: I, III, II, IV	
	D: IV, III, II, I	

4. What is cytokinesis?

6. In w	hich order do the following events take place during meiosis in animals and plants?
	(1p)
I	Formation of synaptonemal complex (SC) and pairing of homologous chromosome
	regions.
II	Crossing over, i.e. exchange of nonsister chromatid regions.
III	Cessation of pairing of homologous chromosome regions.
IV	Cessation of association between sister chromatid regions. However, association between
	sister chromatid regions in the centromere region still prevails.
V	Formation of chiasmata.
	A: I, II, III, IV, V
	B: I, II, III, V, IV
	C: I, V, II, III, IV
	D: I, III, IV, V, II

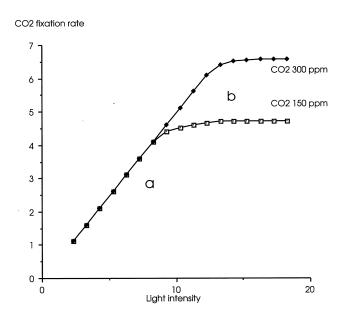
7. Myxobacteria are said to be "social" bacteria, because they can aggregate to form multicellular structures. To form these multicellular structures, the bacteria communicate with each other using chemical signals, one of which is cyclic AMP (cAMP). A scientist is cultivating myxobacteria on a semisolid surface where the bacteria can move. He is applying a gradient of cAMP to the culture vessel, so that the concentration of this compound is much higher at one end of the vessel than at the oppposite.

Where does he find the bacteria in the vessel?

•	(-P)
A. At the end where the cAMP concentration is highest.	
B. At the end where the cAMP concentration is lowest.	
C. At the middle, where the cAMP concentration is intermediate.	
D. Evenly dispersed all over the vessel.	

8. Human superoxide dismutase (hSOD, an enzyme converting the superoxide radical, O_2 , to peroxide, O_2^2) is a remarkable enzyme: heat resistant, and stable to proteases and detergents. It is of considerable medical interest for its potential in treating various human syndromes caused by oxidation damage. You have access to cDNA encoding this enzyme, and want to clone it for large-scale production. Which of the following vectors (DNA molecule into which to clone your hSOD gene) is the most suitable choice for cloning this gene?

	. (1р)
 Α	. A bacterial plasmid providing the cloned gene with a signal sequence causing its
	export out of the cell.
 В	. A bacterial virus that replicates to produce a high number of new virions, and
	then lyses the cell.
 C	. A eukaryotic high-copy-number plasmid (high copy number = the plasmid is
	present in a very high number in each cell that harbors it).
 D	. A eukaryotic plasmid providing the cloned gene with a signal sequence causing
	its export out of the cell


Plant Anatomy & Physiology

9. What is the primary cause of the inability of non-halophyte plants to grow in soils of high salt
concentration?
(1p)
A. Mineral ions are poisonous to the plants.
B. The water potential of the soil is too low.
C. The oxygen content of the soil is too low.
D. Salt-loving nematodes feed on the root hairs.
E. A crust of salt close to the soil surface makes it difficult for young seedlings to
penetrate the soil.
F. Salt crystals form in the stomata and stop the gas exchange.
10. From which layer in a young tree stem do aphids (the insect family Aphididae) obtain their nutrition
(1p)
A. The cambium.
B. The layer outside the cambium.
C. The layer inside the cambium.
D. Different layers depending on the age of the plant.
E. Different layers depending on the aphid's age and stage of development.

		(1p)
	A. Mesophyte.	
	B. Gametophyte.	
	C. Endospermatophyte.	
	D. Allelophyte.	
	E. Sporophyte.	
	F. Zygotophyte.	
	G. Cormophyte.	
	H. Chrocophyte.	
	I. Diplophyte.	
11b. Wh	nat is the plant haplophase called?	(1p)
	A. Mesophyte.	
	B. Gametophyte.	
	C. Endospermatophyte.	
	D. Chrocophyte.	
	E. Cormophyte.	
	F. Haplophyte.	
	G. Sporophyte.	
	H. Allelophyte.	
	I. Egg-plant.	

11a. What is the plant diplophase called?

12. This graph shows how the CO_2 fixation rate of a plant varies with light intensity and different CO_2 concentrations in the air:

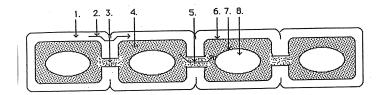
Which of the following interpretations of the linear portion (a) of the curve is correct? It represents the part where CO₂ fixation rate is limited by . . .

(1p)

____ A. . . . CO₂.

____ B. ... light.

 $_$ C. . . . CO_2 and light.


____ D. . . . temperature.

13. The carrot (Daucus carota) belongs to a group of plants we call rosette plants, because	use they grow	
into a rosette of leaves in the first year and build up a supply of food in their roots. If su	ch a plant is left	
in the field over the winter, the root and the stem tip will survive, and in the next summ	er it will grow	
into a long stem with leaves and flowers and then develop fruits and seeds. Then it will die.		
However, it is possible to keep it alive and growing for several years without flowering	. What treatment	
is appropriate?		
	(1p)	
A. Spray with gibberellin every second month.		
B. Keep it in a glasshouse with a constant temperature of 20 °C.		
C. Plant it in a very poor soil.		
D. Dig it up every autumn and place it in a refrigerator during the winter	er.	

____ E. Cut off the leaves before they wilt after the summer.

14. The drawing shows some leaf cells. The arrows (1-8) mark parts of the cells and pathways where water can pass. Which of the statements (A-D) provides a correct explanation of the drawing?

(1p)

A. 1 = symplast, 2 = symplastic pathway, 3 = plasmodesma, 4 = apoplast,

5 = apoplastic pathway, 6 = plasma membrane, 7 = vacuole membrane,

8 = stoma

B. 1 = apoplast, 2 = apoplastic pathway, 3 = plasmodesm, 4 = symplast,
5 = symplastic pathway, 6 = vacuole membrane, 7 = plasma membrane,
8 = vacuole

C. 1 = symplast, 2 = apoplastic pathway, 3 = cytoplasm, 4 = cell wall,

5 = symplastic pathway, 6 = vacuole membrane, 7 = plasma membrane,

8 = stoma

D. 1 = apoplast, 2 = apoplastic pathway, 3 = plasmodesm, 4 = symplast,

5 = symplastic pathway, 6 = plasma membrane, 7 = vacuole membrane,

8 = vacuole

Animal Anatomy & Physiology

15. The taste quality detected by taste buds located on the posterior third of the h	uman tongue is
	(1p)
A sweet.	
B sour.	
C bitter.	
D salty.	
16. An antidiuretic hormone	
	(lp)
A increases plasma osmolality (solute potential).	
B decreases sodium reabsorption from the ascending limb o	f the loop of Henle.
C decreases plasma glucose after meals.	
D decreases urea reabsorption.	
E increases free-water transfer from the distal tubule and co	llecting duct to the
capillary blood.	

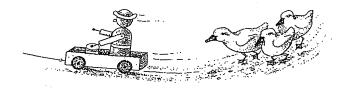
17. Hyperthyroidism is characterized by	
(1	p)
A increased metabolic rate, increased heart rate, weight gain.	
B increased metabolic rate, increased heat production, weight loss.	
C increased heat production, increased oxygen consumption, weight	gain
D increased heart rate, weight loss, sleepiness.	
18. At what stage does implantation into the uterus of a woman occur?	
(1	p)
A. Zygote.	
B. Unfertilized egg cell.	
C. Gastrula.	
D. Blastocyst.	
19. Deleted	

Plant Anatomy & Physiology

20. The spectrum of light reaching the ground under a canopy in a forest differs from the	he light
eaching the ground in an open field.	
20a. This difference is mostly due to a certain plant molecule. Which?	
	(1p)
A. Rubisco.	
B. Chlorophyll.	
C. Phytochrome.	
D. Cellulose.	
E. Tabasco.	
20b. In what respect does the light under a canopy differ from the light in an open field	1?
	(1p)
A. The ratio of blue to green light is higher.	
B. The ratio of red to far red light is higher.	
C. The ratio of red to green light is higher.	
D. The ratio of far red to red light is higher.	

20. (continued)

20c. Plants respond to the composition of light through the action of a certain compound. Which
compound?
(1p)
A. Gibberellin.
B. Cytokinin.
C. Phytochrome.
D. Rhodopsin.
E. Cytochrome.
20d. In which of the following respects do the plants under a canopy differ from plants of the same
species in an open field?
(1p)
A. They have longer internodes.
B. They have shorter internodes.
C. They have thicker stems.
D. Their anthocyanin content is higher.


Ethology

21. In the picture you can see a moving toy followed by three goslings (young domestic geese).

What is the most likely explanation for the behaviour of the young birds?

(1p)	
rents.	

- A. It is a displacement activity resulting from the absence of their parents.
- B. Imprinting, i.e. the toy was the first moving object they saw after hatching, and as a result they react to it as if it were their parent.
- ____ C. They have been trained by their keeper to follow this particular object.
- _____ D. Goslings have an innate tendency or instinct to follow any moving object they see.

22. Deleted

23. In certain animal species, such as ants and bees, many or even most individuals abstain from
their own reproduction and devote all their energy to nursing and protecting the offspring of other
individuals. This may appear paradoxical, since natural selection implies unequal reproductive
success and generates organisms maximizing their reproductive output. What is the evolutionary
explanation of the presence of large numbers of sterile individuals in an ant colony?
(1p)
A. Reduced reproductive output guarantees that the demand for food can
perpetually be satisfied locally and thus the ant colony safeguards its own long-
term persistence by reproductive restraint.
B. All the ants in the colony are closely related genetically and therefore accrue
fitness through the reproductive success of their close kin.
C. The sex ratio among new-born ants is greatly skewed such that most females do
not find males to mate with and therefore inevitably live a sterile life.
D. Ants reproduce exclusively, parthenogenetically

24. In the practical test, you investigated if female guppies prefer some males over others. A more
complicated question is why female guppies show such preferences.
24a. For simplicity, assume that most females already have evolved a preference for males with
large tail-fins. In that case, what advantage may an individual female get by mating preferentially
with males having large tail-fins, instead of mating randomly with any male?
· (1p)
A. By copulating preferentially with males having large tail-fins, a female will
experience less competition (from other females) over mating opportunities.
B. A male with a large tailfin is likely to produce sons with large tailfins as well,
and as a result a female which preferentially copulates with such a male will get
sons that are attractive to other females, and therefore she is likely to get many
grandchildren.
C. A male with a large tailfin is likely to produce sons with small tailfins, so the
sons will not be very attractive to other females, and consequently they have to
copulate with their mother and she will get many more offspring.
D. A male with a large tail-fin is less likely to have copulated with many other
females, and therefore a female copulating preferentially with such males has a
lower risk of getting infected by venereal diseases.

24. (continued)

24b. Not only females may be choosy about whom to mate with. In a number of species males prefer certain females and ignore or reject others. In some species males are in fact more choosy than females. An alternative experiment therefore could have been to investigate the mating preferences of male guppies, for instance, whether they prefer big or small females.

Suppose you know that males prefer big females. Suppose also that the males on each copulation event deliver a number of sperm that is many times the number needed to fertilize all the ripe eggs carried by the female, while there is a limit to how frequently a male can copulate. What could then be the advantage to the male of being choosy about whom to mate with instead of mating randomly with any female?

A. Larger females produce more eggs, so a male that copulates preferentially with larger females is likely to sire a larger number of offspring.

B. Larger males produce more sperm, and therefore a male that copulates preferentially with larger females is likely to sire a larger number of offspring.

C. Larger females use more energy and nutrients for body growth and less for producing young, and therefore a male that copulates preferentially with larger females is likely to sire a smaller number of offspring.

D. Larger females copulate with a higher number of different males, and therefore the offspring of each male is more genetically diverse if the mother is large than if the mother is small. This increased genetic diversity leads to higher fitness of the offspring, and therefore a male sires more grandchildren if he copulates preferentially with large females.

Genetics & Evolution

25. Tay Sach's disease (TSD) in humans is caused by the inability to synthesize hexosaminidase. This enzyme contributes to the breakdown and turnover of lipids in brain cells. TSD shows monohybrid, autosomal and recessive inheritance. The genotype of an individual with TSD may thus be denoted aa. What is the most likely explanation for an Aa-individual being just as healthy as an AA-individual?

(1p)

A. The dominant allele A is a transposon. In a heterozygous individual it detaches from its normal position and moves on to the recessive allele a, thus preventing the transcription of a.
B. The recessive mutant allele is expressed as an inhibitor protein that prevents the transcription of the normal allele A.
C. In heterozygous embryos a mutates to A. Consequently there are no Aa-adults.
D. The amount of hexosaminidase produced by an Aa-individual is quite enough

for normal breakdown of lipids.

26. Independently of Darwin, another person developed the same theory of natural selection as the
chief driving force of evolution. When he informed Darwin about his theory, this precipitated
Darwin's publication of "On the Origin of Species". What was the name of this person?
(1p)
A. Ernst Haeckel
B. Carl von Linné (Carolus Linnaeus)
C. Alfred Wallace
D. Jean-Baptiste de Lamarck
E. Charles Lyell
F. Gregor Mendel
27. Of which of the following phenomena do Darwin's observations of the Galapagos finches
(fam. Geospizidae) provide a classical example?
(1p)
A. Hardy-Weinberg equilibrium.
B. Sympatric speciation.
C. Adaptive radiation.
D. Convergent evolution.
E. Flightlessness.

28. The alleles at the AB0-locus are here denoted I^{h} , I^{g} and i, respectively. The genotype of an individual with blood group B is thus either $I^{g}I^{g}$ or $I^{g}i$. The allele frequencies in the population are denoted $p(I^{h})$, $q(I^{g})$ and r(i), respectively.

When you answer the following questions, assume that individuals mate randomly with respect to their genotype at the AB0-locus.

28a. What is the expected frequency of individuals with blood group B?

(1p)

____ A. 2qr³

____ B. $q^2 + 2qr$

C. 2qr

____ D. q + r

____ E. p+q+r

In the country Faraway live Eve and Elvis and their two children, Olga and Boris. Eve and Elvis both have blood group B.

28b. What is the probability that Olga has blood group 0?

(1p)

____ A. r²

____ B. 2qr³

____ C. $(2qr)^2 \times 1/4$

____ D. $(2qr/(q^2+2qr))^2 \times 1/4$

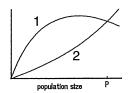
____ E. 1 - 2qr

28. (continued)

28c. What is the probability that Olga and her brother Boris both have blood group 0?	
	(1p)
A. r ⁴	
B. $(2qr)^2 \times 1/4$	
C. $(2qr / (q^2 + 2qr))^2 \times (1/4)^2$	
D. $((2qr / (q^2 + 2qr))^2 \times 1/4)^2$	
E. (1 - 2qr) ²	
29. On an isolated island live 5 800 people, of which 2 800 are men. 196 of these men	are red-green
colour-blind. This type of colour blindness is caused by a recessive allele (r) on the X-	-
chromosome. This type of colour blindness does not affect the fitness of an individual	
What is the probability that at least one of the women on this island is red-green colo	ur-blind?
	(1p)
A. 0.00	
В. 0.08	
C. 1 - 0.9951 ³⁰⁰⁰	
D. 1 - 0.9936 ³⁰⁰⁰	
E. $3000 \times 0.0056 \times 0.9944^{2999}$	
F. 0.0064	
G. 1.00	

30. In an island population of an annual, diploid plant species the allele frequencies in 1999 are
p(A) = 0.90 and $q(a) = 0.10$. Suppose that the population consists of 50 plants in the year of 2000.
Then, what is the probability that the allele a has been lost (i.e. $p(A) = 1$), just by chance, between
the year 1999 and 2000?
(1p)
A. 0.90 ¹⁰⁰
B. 0.90 ⁵⁰
C. 0.90
D. 0.10^{100}
E. 0.10
31. Heterozygosity, i.e. the frequency of individuals that are heterozygous at a certain locus, is a
commonly used measure of genetic variation in a population. Assume a population of an annual
plant species consisting of about 50 individuals. This year the allele frequencies in one locus are
p(A) = 0.90 and $q(a) = 0.10$, respectively. Which of the following evolutionary forces might cause
an increase of the heterozygosity in the next generation?
(1p)
A. Genetic drift.
B. Inbreeding.
C. Selection against aa-plants (aa having lower fitness than AA and Aa).
D. Immigration from a population where $p(A) = 0.99$ and $q(a) = 0.01$.

multicellular organisms with differentiated organs?	
	(1p)
A. They are very successful in the niche they occupy, and therefore de-	o not need to
evolve to multicellularity.	
B. They lack a cytoskeleton, and thus cannot develop good communic	cations to
adjacent cells.	
C. They have a rigid cell wall, and therefore cannot contact other cell	s.
D. Because they have a very versatile metabolism they cannot develo	p
multicellularity.	


32. What features of present day bacteria are likely to prevent their direct evolution into

Ecology

33. In setting harvesting quotas, for instance for whales, graphs are studied that show the relationship between number of births, number of deaths and population size. Inspect the following example:

Induviduals/time unit

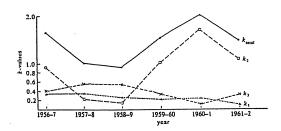
Induviduals/time unit

Which line in the graph shows the number of births, and what does the point P represent?

(1p)

A. Line 1 shows the number of births, and P represents the maximum population size.

B. Line 2 shows the number of births, and P represents the maximum population size.


C. Line 1 shows the number of births, and P represents the carrying capacity.

_____ D. Line 2 shows the number of births, and P represents the carrying capacity.

34. The marine pelagial is usually divided into two zones: an upper zone where net primary
production takes place, and a lower zone where it does not. What is the critical factor generating
this difference?
(lp)
A. In the upper zone the water is warm enough for algae to grow faster than their
primary consumers can eat them.
B. In the upper zone there is enough light for photosynthesis to produce a surplus
of organic matter.
C. In the upper zone the concentration of nutrients is high enough for
photosynthesis to produce a surplus of organic matter.
D. In the upper zone the intensive stirring of water near the surface gives the water
an oxygen concentration high enough for photosynthesis to take place.
E. In the upper zone the population density of fish is high enough to keep
zooplankton at a low density, thereby allowing a high concentration of algae.

35. The population of a particular species of butterfly is affected by three mortality factors (with k-values k_1 , k_2 , k_3). The graph shows the variation of these over several years together with the variation in k_{total} . As k-values increase, butterfly mortality increases.

Use the graph to help you answer these questions:

35a. What is the relationship between k_1 , k_2 , k_3 and k_{total} ?

(1p)

____ A.
$$k_{total} = k_1 x k_2 x k_3$$

_____ B.
$$k_{total} = k_1 x k_2 / k_3$$

____ C.
$$k_{total} = k_1 x k_3 / k_2$$

____ D.
$$k_{total} = k_1 + k_2 + k_3$$

____ E.
$$k_{total} = k_1 + k_2 - k_3$$

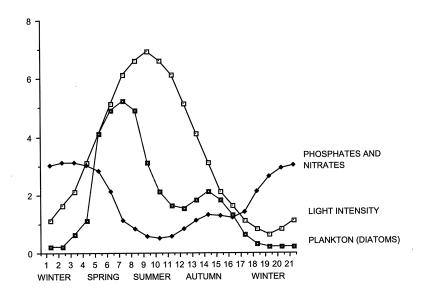
____ F.
$$k_{total} = k_1 + k_3 - k_2$$

35. (continued)

		(lp)
	A. k ₁	
	B. k ₂	
	C. k ₃	
35c. In v	which year did most butterflies survive to breed?	
35c. In v	which year did most butterflies survive to breed?	(1p)
35c. In v	which year did most butterflies survive to breed? A. 1956-57	(1p)
35c. In v		(1p)
35c. In v	A. 1956-57	(1p)
35c. In v	A. 1956-57 B. 1957-58	(1p)
35c. In v	A. 1956-57 B. 1957-58 C. 1958-59	(1p)

36. The number of species in a landscape is often divided into two components called α -diversity and β -diversity. α -diversity is the number of species within a certain biotope in the area, while β -diversity is the degree of difference in the number of species composition between different biotopes in the landscape. Study the following table, which shows the species composition in three different biotopes within three different areas.

П									
Area		1.			2			3	
Biotope	1	2	3	1	2	3	1	2	3
Species									
1	х			х			x		
				х					
2 3 4 5 6 7 8	х			х			X		
4	x			x			х		
5	х			x			x		
6	х	x		x	x		x		
7	х	x		х	x		x		
8	x	x		x	x		х		
9	x	x		x	x			X	
10	x	X						X	
11		X	X		x			X	
12		x	X		X	X		X	
13		x	X		X			X	
14						X		X	
15		X	x			X			X
16			x			X			X
17			x			X			X
18			x			x			
19			X			x			X
20						X			Х


36. (continued) **36a.** Which biotope has on the average the highest α -diversity? (1p)_____ A. Biotope 1. _____ B. Biotope 2. ____ C. Biotope 3. **36b.** In which area is the average α -diversity of the three biotopes highest? (1p)____ A. Area 1. _____ B. Area 2. ____ C. Area 3. **36c.** In which area is the β -diversity highest? (1p)____ A. Area 1. ____ B. Area 2. ____ C. Area 3.

38. Deleted

37. Deleted

39. This graph shows the seasonal changes in diatom plankton number and in some abiotic factors in the upper layers of an ocean in the Northern temperate zone:

Arbitrary units

Which of the following interpretations of the graph is correct?

A. The increasing light intensity destroys diatoms.
B. The increasing amount of diatoms decreases the amount of nutrients.
C. The increasing light intensity creates upwelling which raises the nutrients to the sea surface.
D. The increasing light intensity increases the activity of decomposers and as a result of this the amount of nutrients decreases.
E. The decline of diatoms causes the declines of nutrients.

(1p)

Systematics

40. In which of the following alternatives (A-D) are the traditional taxo	onomic categories listed from
more inclusive to less inclusive?	
	(1p)
A. Order, Genus, Class, Family, Species.	
B. Class, Order, Family, Genus, Species.	
C. Genus, Order, Class, Family, Species.	
D. Family, Genus, Order, Class, Species.	
41. Which of the following categories includes all the others?	
	(1p)
A. Chordates.	
B. Vertebrates.	
C. Amphibians.	
D. Mammals.	

42. When did Dinosaurs become extinct?	
	(1p)
A. Ca 2 million years ago.	
B. Ca 65 million years ago.	
C. Ca 200 million years ago.	
D. Ca 400 million years ago.	
·	
43. A fish, a dolphin and a penguin have mar	ny external features in common, such as a stream-lined
body shape. Why?	
	(1p)
A. They descend from one an	d the same recent ancestor and still possess many of
this ancestor's traits (phylo	ogenetic inertia); thus the body shape is not an
adaptive trait.	
B. They are all swimming an	imals and have therefore accumulated features making
locomotion in water less e	energy-demanding (convergent evolution).
C. The similarity between the	ese animals is superficial and reflects neither common
history nor evolutionary re	esponse to the same environment; in fact, these
animals are built along en	tirely different principles; they live in the same habitat
(water) because they have	their particular shape, rather than the other way
around.	

the separation of the hominid line and the chimpanzee line occurred:	
	(1p)
A. Ca 250 000 years ago.	
B. Ca 100 000 000 years ago.	
C. Ca 6 000 000 years ago.	
D. Ca 6 000 years ago.	
45. After the separation of the chimpanzee and hominid lines, the first major trait chara-	acterizing the
hominid line was	
	(1p)
A brain enlargement.	
B stereoscopic vision.	
C tool making.	
D bipedalism and erect body posture/walking.	
E homeothermy.	
F increased sexual size dimorphism.	
G carnivory (meat-eating).	

44. The genetic similarities between man and the two chimpanzee species allow us to estimate that

Surname	First name
Country	Code number

10th International Biology Olympiad

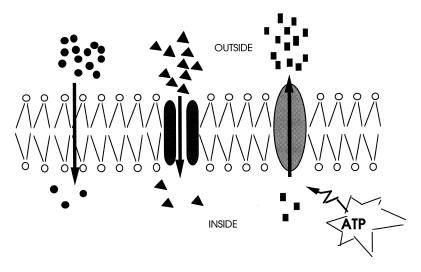
Theoretical test 1999-07-08

Part B

In this part, all questions are multiple choice questions, but in each question any number among the answers may be correct. Thus, there may be only one correct answer, or several, or all answers may be correct. You must mark exactly and only those answers that are correct. You always mark the correct answers with a cross (X) on the lines in front of them.

Cell Biology, Microbiology & Biotechnology

46. The lac genes of Escherichia coli are classic; this is where the operon concept was coined, and
investigations of how this oper on was regulated rendered its investigators a Nobel prize. The lac
operon of E. coli contains three genes:
z , encoding β -galactosidase,
y, encoding β -galactoside permease, and
a, encoding a transacetylase.
Allolactose is an isomer of lactose that is produced by $\beta\mbox{-galactosidase}$ as an intermediate $% \beta\mbox{-galactosidase}$ in the
splitting of lactose to galactose and glucose. It is allolactose, not lactose, that is the natural induce
for the <i>lac</i> operon. Allolactose binds to the repressor and thereby opens the operon for
transcription. Under which of the following conditions will expression of $\beta\text{-galactoside}$ permease
be induced?
(2p)
A. Addition of lactose to a z^iy^* mutant.
B. Addition of allolactose to a $z^{\dagger}y^{\dagger}$ mutant.
C. Addition of lactose to a z^*y mutant.
D. Addition of allolactose to a z [†] v mutant


47. Cycloheximide is a drug that prevents protein synthesis in eukaryotic cells; chloramphenicol prevents protein synthesis in bacterial cells. Steroid hormones exert their effect by binding to cellular receptors. The hormone-receptor complex then binds to particular regions of DNA, and thereby regulates transcription. A transcriptional co-activator, TC, has been isolated from human cells. This binds to the steroid receptor, and is necessary for full transcriptional activation by a steroid hormone. The cDNA encoding TC has been cloned in a bacterial plasmid. Cultured human cells were transfected with this plasmid in the presence of cycloheximide or chloramphenicol. In both cases full steroid hormone transcription activation took place. The cDNA clone was subsequently mutated, introducing stop codons in all three reading frames. Upon transfection of human cells, full steroid hormone transcription activation took place.

Which of the following explanations are consistent with these data?

A. The human cells contain translational suppressors that override all the stop codons. Therefore the normal TC product can be made, despite the presence of stop codons in all reading frames.
B. The gene product of TC necessary to activate transcription is an RNA, not a protein.
C. The plasmid contained enough TC protein so that no new TC protein synthesis was needed in the human cell upon transfection for maximal transcription activation.
D. The cDNA itself bound to the steroid receptor and thereby activated transcription.

(2p)

48. The drawing below shows the transport of different substances through the plasma membrane of a plant cell. The drawing represents a lipid bilayer with a channel protein (middle) and a carrier protein (right). The direction of each transport is shown by an arrow and the number of symbols indicates the concentration of each substance.

Which statements are correct?

(1p)

- A. This substance can be sucrose.
- _____ B. This substance can be oxygen.
- ____ C. This substance can be chloride ions.
- D. This substance can be water.
- E. This substance can be protons.

49. One line of cultured mouse lymphoma cells is quite sensitive to cyclic AMP (cAMP). High internal levels of cAMP cause cell death. The intracellular activity of dibuturyl-cAMP (db-cAMP) and cAMP is the same. Resistant cells can be selected by growing the cells in the presence of db-cAMP. Such cells are resistant not only to cAMP, but also to the prostaglandin PGE1 (which kills sensitive cells by raising their intracellular cAMP level).

A student homogenized db-cAMP-sensitive and db-cAMP-resistant cells so that their cell membranes_became disrupted, and then removed all particulate matter (fragments of cell membranes, nuclei and internal membrane systems) so that essentially only the protein-containing cytoplasm was left. She prepared three samples for analysis, as shown below. She then added radioactive cAMP, incubated for a while, and subjected the mixture to gel filtration (a technique that separates molecules according to their size). In both cases she found the radioactivity in two peaks: a complex of cAMP with some protein(-s) (fraction A), and free cAMP (fraction B):

	fraction radioactive cAMP	
Cell homogenates	A: in protein complex	B: free
sensitive	0.5	0.5
resistant	0.1	0.9
equal mixture of sensitive and resistant	0.5	0.5

Which of the following explanations is/are consistent with the data?	
	(2 p)
A. The transport system for cAMP is defective in resistant cells. cAM	IP binds to
this transport protein in homogenates from sensitive cells, and there	efore does no
bind to anything in homogenates from resistant cells	
B. The regulatory subunit of a protein kinase is defective in resistant	cells. cAMP
binds to this regulatory subunit in homogenates from sensitive cells	s, and
therefore does not bind to anything in homogenates from resistant of	cells.
C. Resistant cells contain a new activity that is capable of modifying c	AMP so
that it no longer can bind to its receptor. The "free cAMP" in home	genates from
resistant cells is really modified cAMP that elutes in approximately	the same
way as cAMP.	
50. In eukaryotes, the majority of the RNA made in the nucleus undergoes three modi	fications
before being transported from the nucleus to the cytoplasm. Which of these modification	ions help
protect the RNA from degradation by nucleases?	
	(1 p)
A. A 7-methyl-guanosine cap is added to its 5' end.	
B. A poly-A tail is added to its 3' end.	
C. Introns are spliced out.	

51. Which of the features below would permit you to determine whether a cell is eukaryotic	or
prokaryotic?	
· (1p)	
A. The genetic material exists as a complex of nucleic acids and proteins.	
B. The genetic material is separated from the rest of the cell by a semiperment	eable
barrier.	
C. There is a cell wall.	
D. The cell is motile.	
E. It can use H ₂ S as energy source.	
52. Which of the following statements is/are true for bacteria?	
(1p)	
A. Negative control of gene expression is common.	
B. The processes of transcription and translation are coupled.	
C. Positive control of gene expression is common.	
D. Structural genes average 50 000 base pairs.	
E. Several genes are transcribed into one mRNA molecule	

53. Respiring cells use the citric acid cycle (Krebs cycle) to oxidize their nutrients completely, and
obtain NADH that is subsquently oxidized in mitochondria to gain ATP. Fermenting cells (yeast,
for instance, and many bacteria) use part of the citric acid cycle, although they cannot oxidize their
nutrients completely, and do not gain ATP from the extra NADH it generates. What do fermenting
cells gain by operating part of the citric acid cycle?
(1 p)
A. A supply of oxaloacetate, which is a very unstable compound, and therefore needs to be
made continuously.
B. Supplies of some of the citric acid cycle intermediates, which are essential precursors
for cellular biosynthesis.
C. A supply of succinate, which is needed for acylation of tRNAs. Without acyl- tRNAs,
protein synthesis is inhibited.
D. A supply of malate, which is needed for all ATP synthesis.
54. Deleted
55. Deleted

56. A scientist was growing yeast (Saccharomyces cerevisiae) in a simple nutrient solu	tion, using
¹⁴ C-labelled glucose as its only energy source. She noted that for each mole of glucose	that was
completely oxidized, the cells consumed 6 moles of O2, and produced 36 moles of ATI	2.
56a. The radioactivity of what carbon compound(-s) did she measure to be able to say	that the
glucose was completely oxidized?	
	(1p)
A. CO ₂	
B. CH ₄	
C. Ethanol	
D. Lactate	
56b. What is the name of the process that she was studying?	
	(1p)
A. Respiration.	
B. Detoxification.	
C. Fermentation.	
D. Denitrification.	
E. Photosynthesis.	

____ C. Ethanol.
____ D. Lactate.

She then moved her culture to an anaerobic environment, and continued to study what	happened to
the radioactive glucose. She found that the cells continued to grow, utilizing glucose a	s energy
source. Now, no oxygen was consumed, and the yield of ATP was only 2 moles per m	ole glucose
oxidized.	
56c. What is the name of the process that she is now studying?	
	(1p)
A. Respiration.	
B. Detoxification.	
C. Fermentation.	
D. Denitrification.	
E. Photosynthesis.	
56d. Which compound(-s) will become labelled by ¹⁴ C under these conditions?	
	(1p)
A. CO,	
B. CH ₄	
7.	

Plant Anatomy & Physiology

- **57.** Seeds of wheat (*Triticum aestivum*, family Poaceae = Graminae) and lupin (*Lupinus polyphyllus*, family Fabaceae = Leguminosae) were used in the following experiment. Both types of seeds had been harvested about 6 months before. Dry seeds of each species were put together in samples of the same weight and treated as follows:
- a. Wheat seeds were soaked in water for 24 hours
- b. Wheat seeds were soaked in a solution of 1 M mannitol for 24 hours (mannitol is a sugar alcohol not taken up by plants)
- c. Lupin seeds were soaked in water for 24 hours
- d. Lupin seeds were dipped in boiling water for a few seconds and then soaked in water for 24 hours.

All samples were kept in darkness for 24 hours and then weighed and placed on wet filter papers in Petri dishes for a germination test. The table below shows the approximate percent increase in weight during the different treatments, and the percent germination.

Treatment	Percent increase	Percent
	In weight	germinating seeds
a. Wheat soaked in water	98	100
b. Wheat soaked in mannitol solution	12	0
c. Lupin seeds soaked in water	11	0
d. Lupin seed dipped in hot water before soaking	110	80

Which explanations to the results are probable?

(2p)	
A. In water-soaked seeds respiration starts so that water can be taken up.	
B. The difference in weight between dry seeds and water-soaked seed is du	e to
water uptake.	
C. The mannitol enters the cell wall and makes it impermeable to oxygen a	nd
water.	
D. The mannitol inhibits certain steps in the citric acid cycle (Krebs cycle).	
E. The high concentration of mannitol hinders the uptake of water.	
F. Mannitol makes a very tight slime around the wheat seeds which squeez	es them
so they cannot grow.	
G. Fresh lupin seeds have seed coats with a very low permeability to water.	•
H. When heated the dry lupin seeds are stressed and produce a lot of new p	roteins
so that their weight increases.	
I. The heating of lupin seeds makes the seed coat more permeable to water	:
J. The heating of lupin seeds destroys the cell membranes so that water go	es in.

58. The Calvin cycle	
(1p)
A proceeds during the night.	
B produces phosphoglyceraldehyde.	
C needs ATP.	
D releases carbon dioxide.	
•	
59. What are the benefits to the plant of C4 photosynthesis as compared to C3 photosynthesis	thesis?
	1p)
A. C4 photosynthesis needs fewer light quanta to fix one mole of CO ₂ .	
B. C4 photosynthesis can proceed at much lower CO ₂ concentrations that	an
C3 photosynthesis.	
C. Plants with C4 photosynthesis are more economic in water use.	
D. Plants with C4 photosynthesis require fewer types of minerals.	

Animal Anatomy & Physiology

60. The absorption in the small intestine in humans is impaired if the liver stops produc	ing bile.
The absorption of which of the compounds A-E would be severely reduced without bile	?
	(1p)
A. Dipeptides.	
B. Fat-soluble vitamins.	
C. Starch.	
D. Glucose.	
E. Amino acids.	
61. Which of the following compounds are transported in intestinal epithelial cells by a	sodium ion
(Na ⁺) dependent cotransport process?	
	(1p)
A. Glucose.	
B. Galactose.	
C. Fructose.	
D. Amino acids.	
E. Dipeptides.	

62. Which of the following structures, features and processes are necessary for gas exchange in all
animals?
(2p)
A. Hemoglobin or another respiratory pigment.
B. Thin and wet surface.
C. Diffusion.
D. Red blood cells.
E. Lungs or tracheae.
F. Oxygenated water or air.
63. Which of the following compounds normally appear in the glomerular filtrate of mammals?
(1p)
A. Urea.
B. Glucose.
C. Amino acids.
D. Plasma proteins.
E. Mineral salts.

64. Which of the following substance(s) are essential for blood coagulation in the huma	an body?
	(1p)
A. Prothrombin.	
B Potassium.	
C. Heparin.	
D. Fibrinogen.	
E. Calcium.	
65. The following measurements were obtained in a male patient:	
Heart rate = 70 beats/min	
Pulmonary vein contains 0.24 ml O ₂ /ml	
Pulmonary artery contains 0.16 ml O ₂ /ml	
Whole body O_2 consumption = 500 ml/min	
What is the patient's cardiac output?	
	(2p)
A. 1.65 L/min.	
B. 4.55 L/min.	
C. 5.0 L/min.	
D. 6.25 L/min.	
E. 8.0 L /min.	

66. Two types of n	nuscle participate	in the locomotion of ea	arthworms (<i>Lumbricus</i> , Annelida). V	Vhen
moving forward, a	n earthworm first	squeezes the front seg	gments into a long tube (I) and then of	lrags
its back part (II). V	Which muscles are	contracted (c) and rela	axed (r) in I and II, respectively?	
			(2p)	
		I	II	
	Longitudinal mu	scles/circular muscles	Longitudinal muscles/circular musc	cles
	•			
A.		r/c	r/c	
B.		r/c	c/r	
C.		c/r	c/r	
D		c/r	r/c	

c/c

____ E.

r/r

Genetics & Evolution

67. The wild type eye colour of the fruit fly *Drosophila melanogaster* is brick red. In such an eye there are two types of pigments: bright red and brown pigments.

A young student has as a hobby to collect mutants of D. melanogaster with bright red eyes. He has received some such strains from a Drosophila Stock Centre, e.g. cinnabar, scarlet and vermilion, all of which have bright red eyes. In the compost bucket in his kitchen he was happy to find a mutant with bright red eye colour. From this compost mutant he produced a true-breeding strain with bright red eyes that he calls "Uppsala". His girl-friend has given him "Wik", which is another true-breeding strain with bright red eyes. Crosses between some true-breeding strains gave the results presented in the table below. Each F_1 consisted of hundreds of flies. The number of F_2 individuals are given in the table. Wild type is denoted by "+", and the mutants with bright red eye colour by "m".

Parent strains (P)			Phenotypes in F ₁		Phenotypes in F ₂	
Females	х	Males	Females	Males	Females	Males
cinnabar	x	+	+	+	762 +	757 +
					242 m	239 m
scarlet	x	+	+	+	312+	301 +
					101 m	99 m
scarlet	х	cinnabar	+	+	908 +	901 +
scarter	Α	emaca.			699 m	692 m
vermilion	x	+	+	m	114 +	111 +
					104 m	102 m
Uppsala	x	+	+	+	612 +	601 +
					199 m	182 m
Uppsala	х	cinnabar	m	m	216 m	203 m
Wik	x	+	+	m	160 +	155 +
					151 m	149 m
Wik	x	vermilion	+	m	203 +	4+
					197 m	396 m

67a. In which of these strains does mutant bright eye colour show autosomal, monohyl	orid and
recessive inheritance in relation to wild type?	
	(2p)
A. cinnabar	
B. scarlet	
C. vermilion	
D. Uppsala	
E. Wik	
67b. Which mutant strains carry mutant genes in linked but separate loci?	
	(2p)
A. cinnabar and scarlet	
B. cinnabar and vermilion	
C. vermilion and Uppsala	
D. Uppsala and Wik	
E. vermilion and Wik	

distance between these two linked loci?	
	(2p)
A. 1 cM (cM = centimorgan)	
B. 2 cM	
C. 4 cM	
D. 8 cM	
E. 10 cM	
F. 12 cM	
G. 20 cM	
Н. 80 сМ	
e following cell structures are homologous, i.e. derived from a commo	n ancestor?
	(1p)
A. The cell wall of bacteria and the cell wall of plants.	
B. The flagellum of a bacterium and the flagellum of an animal cell, e	.g. a sperm.
C. The nucleosomes in plants and the nucleosomes in animals.	
D. The mitochondria in plants and the mitochondria in animals.	
	A. 1 cM (cM = centimorgan) B. 2 cM C. 4 cM D. 8 cM E. 10 cM F. 12 cM G. 20 cM H. 80 cM A. The cell wall of bacteria and the cell wall of plants. B. The flagellum of a bacterium and the flagellum of an animal cell, e C. The nucleosomes in plants and the nucleosomes in animals. D. The mitochondria in plants and the mitochondria in animals.

69. Some mutations in mitochondrial DNA can cause a disease in humans called Leber's hereditary
optic neuropathy (LHON). This is characterized by a sudden onset of blindness in adults. Which of
the following statements are true?
(1 p)
A. Only women (not men) can develop LHON.
B. Both men and women can develop LHON.
C. A person will develop LHON only if both its mother's and its father's
mitochondria carry the mutation.
D. A person will develop LHON if its father has the disease but its mother is
healthy.
E. A person will develop LHON if its mother has the disease but its father is
healthy.

0. Which of the following statements about speciation in animals is/are true?	
(2p)	
A. Species always arise momentarily as a result of major sudden mutations.	
B. The number of species usually multiplies as a result of one population becomi	ng
divided into two (or more), which subsequently evolve in divergent directions	
C. A species may undergo changes over time and eventually become different	
enough to be regarded and named as a new species.	
D. Speciation invariably proceeds at a fixed pace. Speciation events can therefore	3
be accurately dated using the molecular clock.	
E. According to the biological species definition a species consists of the total se	t
of individual organisms having identical genomes.	
F. On inspection of external features, it should be possible to identify each	
individual in a species. Otherwise the species delimitations are erroneous and	
have to be revised.	
G. All traits distinguishing two species must have evolved by natural selection.	
H. Artifical selection can in principle lead to the generation of new species.	

Ethology

71. A flock of sparrows is feeding at a bird table in a garden. Suddenly one of the sparrows gives an
alarm call, all the birds fly off and hide in nearby bushes, and a second later a hawk flies past. How
can the sparrow that first spotted the hawk gain fitness by calling instead of flying off silently?
(2p)
A. By giving the alarm call the caller will attract the attention of the predator in
order to sacrifice itself for the benefit of its species.
B. Predators that realize they have lost their chance of a surprise attack often give
up hunting, so by giving the alarm call the caller signals to the hawk that it
had been discovered, and the caller thereby will reduce its own risk of being
attacked.
C. By giving the alarm call the caller will save a number of flock members, many
of which are its own relatives. In other words, the habit of giving an alarm
call can be explained in terms of kin selection.
D. Alarm calling is an instinctive response always produced in the presence of
a predator.

Ecology

72. The reproductive life history of an individual is defined by the number, time distribution and
size of its reproductive investments.
Which of the following variables are elements in an individual's reproductive life history as defined
above:
(1p)
A. Reproduction several times or only once.
B. Number and size of offspring per litter/clutch.
C. Age at first reproduction.
D. Discontinuation of reproduction beyond a certain age.
E. Aerobic versus anaerobic metabolism.
F. Vulnerability to interspecific competition.
G. Variation in immunocompetence.

73. An ecological pyramid may describe the number of individuals, the biomass, or the rate of energy flow, at different trophic levels within an ecosystem. Usually the values at a higher trophic level are lower than those at a lower level within the same pyramid. Otherwise the pyramid may be called inverted. What circumstances may lead to inverted pyramids?

(1p)	
A. A pyramid of biomass, in which the producers have a very short lifecycle	
compared to the consumers.	
B. A pyramid of biomass, in which the consumers have a very short lifecycle	
compared to the producers.	
C. A pyramid of numbers of individuals, in which the individual bodymass of	
producers is several orders of magnitude larger than the individual bodymass	of
consumers.	
D. A pyramid of numbers of individuals, in which the primary consumer level is	
strongly dominated by one abundant species.	
E. Extremely hot climate promotes inverted pyramids.	
F. Extremely cold climate promotes inverted pyramids.	
G. Mountainous areas with high UV-radiation have inverted pyramids.	

for a particular species?
(1p)
A. The carrying capacity of an area is determined by the availability of resources
B. When a population that inhabits an area is larger than its carrying capacity, the
population is likely to decrease
C. The carrying capacity of an area can vary as a result of the environmental
conditions.
D. The carrying capacity of an area can be zero.
E. The carrying capacity is always the same for all populations of a species
throughout its range.
75. Which of the following interactions may plausibly generate coevolutionary change? (1p)
A. Interspecific competition.
B. Mutualism (Symbiosis).
C. Predation.
D. Commensalism.
E. Parasitism.

74. Which of the following statements is / are correct in relation to the carrying capacity of an area

76. A metapopulation is a set of local populations, where sometimes a population becomes extinct and sometimes a new population is "born" by emigrants from some population colonizing an empty habitat patch (that is "a population of populations"). In a population, the number of individuals is determined by the balance between birth rate (+ immigration) and death rate (+ emigration). Correspondingly, in a metapopulation the number of populations is determined by the balance between extinction rate and colonization rate. Which of the following statements about metapopulations are correct?

(2p)
 A. If there are many habitat patches and colonizations of empty patches occur
frequently, then the metapopulation may persist for a very long time even if all
local populations are short-lived.
 B. If the extinction rate of local populations exceeds a certain rate the whole
metapopulation will go extinct.
 C. Species that require a habitat that is patchily distributed are more likely to
function as metapopulations than species that are habitat generalists.
 D. Species in which every individual moves several times per day between
different resource patches are more likely to function as metapopulations than
species which only seldom make movements between the resource patches.
 E. A metapopulation can persist only if some dispersal between the habitat patches
is possible.
 F. In a metapopulation, no single population persists longer than the lifespan of one
individual.

Systematics

77. Which of the	ne following statements is / are true?
	(1p)
	A. The human species, Homo sapiens, is a very old species which has been around
	since late Cretaceous.
	B. Orangutans are the closest relatives of humans.
	C. The human species arose in Africa, from where humans spread over the world.
	D. The human species is the only species manufacturing tools for defined purposes
	E. The genetic variation among populations in the human species is small
	compared to that in most species.

78. Deleted

(1p))
A. Potato (Solanum).	
B. Apple (<i>Malus</i>).	
C. Wheat (Triticum).	
D. Carrot (Daucus).	
E. Maize (Zea).	
F. Onion (Allium).	
80. Which of the following statements about Carolus Linnaeus (Carl von Linné) are true?	
(2	p)
A. Linnaeus introduced the concept of hierarchical systematics with ever n	nore
exclusive groups from kingdom down to species.	
B. Linnaeus invented the binomial system of nomenclature giving each spe	ecies a
genus name and a species name, for example Homo sapiens for humans	i .
C. According to the rules of taxonomy a name given by Linnaeus to a spec	ies of
animal or plant can never be changed.	
D. Darwin explicitly benefited from the Linnean hierarchical systematic sy	stem
("clusters within clusters") for the elaboration of his theory of descent v	vith
modification.	
E. Linnaeus' binomial nomenclature is still used in botany but not in zoolo	gy.
F. Linnaeus classified humans as a species belonging to the class of Mamn	nalia and
the order of Primates.	
G. In his life Linnaeus scientifically defined and described more than 100	000
species of plants and animals.	

79. Which of the following plants is / are monocotyledons?

Surname	First name	
Country	Code number	

10th International Biology Olympiad

Theoretical test 1999-07-08

Part C

In this part, the questions are constructed in various ways, and you have to read for each question how the answer is to be given. Often

you answer by writing one or a few digits or characters, and then these must be <u>distinct and</u> <u>legible</u>, otherwise your answer will not be judged as correct. You must use Arabic numerals (1,2,3..).

Cell Biology, Microbiology & Biotechnology

81. It is possible to fuse somatic cells of different origin to each other, producing somatic cell
hybrids. The hybrid cells usually retain only some of the chromosomes contributed by each fusion
partner, different in each hybrid cell. Cells lacking hypoxanthine-guanine
phosphoribosyltransferase (HGPRT) are resistant to 8-azaguanine (8-azaG), while cells lacking
thymidine kinase (TK) are resistant to 5-bromodeoxyuridine (BudR). Neither HGPRT nor TK is
essential for cell growth under ordinary circumstances. In order to map positions of human genes,
scientist wanted to fuse human cells capable of encoding HGPRT but not TK to mouse cells
lacking HGPRT-coding capacity but capable of encoding TK.
81a. What would she need to add to the growth medium to select hybrid cells incapable of making
either HGPRT or TK?
(1p)
A. 8-azaG.
B. BudR.
C. Both 8-azaG and BudR.
D. Neither azaG nor BudR.
E. HGPRT.
F. TK.
G. HGPRT and TK.
H. Neither HGPRT nor TK.

Having obtained the fused cells, she then analyzed the presence (+) or absence (-) of five human enzymes in five different hybrid cell lines. She also tested the presence or absence of four particular human chromosomes in these hybrid cell lines. The results are shown in the table below:

		Hybrid ce	ll lines			
		A	В	С	D	Е
Human enzymes	I	-	+	-	+	-
	II	-	-	-	-	-
	III	+	-	-	+	-
•	IV	+	+	+	+	+
	V	+	-	-	+	-
Human chromosomes	1	_	+	_	+	_
	3	+	-	_	+	-
	8	_	_	-	+	+
	17	+	+	+	+	+

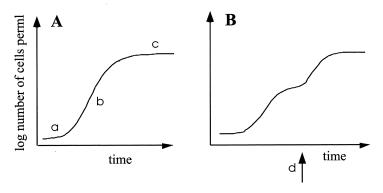
21h	Write on the dotted	line for each	chromosome which	of the enzyme	es I-V it encodes
-----	---------------------	---------------	------------------	---------------	-------------------

(1p)

Chromosome	1:
Chromosome	3:
Chromosome	8:
Chromosomo	17.

82. The chromatin of human cells contains 1.08 mg histone and 0.7 mg non-histone protein per mg
of DNA. Assume that a mole of an average gene contains 10 ⁶ g DNA, and that the average
molecular weights of histones and non-histone chromatine proteins are 12000 and 17000 daltons,
respectively.
82a. How many molecules of chromosomal protein are complexed with an average gene? Write
your answers on the dotted lines.
(1p)
No. histone molecules:
No. non-histone protein molecules:
82b. If an average human cell contains 10 ¹³ daltons of DNA, how many molecules of chromosomal
proteins are complexed with it? Write your answer on the dotted line.
(1p)
molecules
82c. According to one model for how eukaryotic gene expression is regulated, certain chromatin
proteins functions as activators, turning on large sets of genes. Assume such an activator induces
the expression of 1000 genes. If one molecule of activator is required per gene, and the cells are
diploid, what percentage of total chromatine proteins would this represent? Write your answer on
the dotted line.
(1p)
%

83. The following table contains a list of cell constituents in plant and animal cells. Mark with a cross (X) in appropriate boxes of the table the statements that apply to each constituent. Compare only plant and animal cells.


	Only in	Only in	Contains	Forms	Is photo-	
Constituent	Plant cells	animal cells	DNA	starch	synthetic	Is coloured
Chloroplast						
Ribosome						
Proplastid						
Endoplasmatic						
reticulum						
Microfilament						
Mitochondrion						
Nucleus						
Cell wall						
Golgi apparatus						

84. Mitochondria are organelles surrunded by membranes. It is possible to prepare pure mitochondria, and treat them in various ways. What happens when you expose purified mitochondria, kept at 37 °C in an isotonic buffer, to the following treatments?

Several treatments may result in the same effect, and some effects are not obtained by any treatment. Mark with a cross (X) in appropriate boxes of the table which effect the different treatments have. Mark only one box for each treatment.

•	Treatment									
	Temperature	Temperature	Detergent	Lysozyme	Protease	Cyanide	АТР	Pyruvate		
F	raised by 30°	reduced by 30°	added	added	added	added	added	added		
Effect										
The membranes										
are destroyed										
The membranes										
Become more solid										
Electron transport										
starts running										
"backwards" so that										
ATP is consumed										
Electron transport to	,									
oxygen is blocked								-		
The compound is										
taken up and										
oxidized										
Nothing happens										

85. The figure below shows two growth curves obtained with *Escherichia coli*. For both, the cells were kept in a simple mineral-salts medium with no nutrients added. For fig A, 0.2 g glucose was added per 100 ml culture at the start of the experiment. For fig B, 0.05 g glucose was added per 100 ml at the start of the experiment.

85a. What are the correct names of the growth phases designated a - c in fig A?Choose among the names 1-4, and write the number of the correct name on the appropriate line.

(2p)

1 = death phase

2 = exponential phase

3 = lag phase

4 = stationary phase

Phase a is _____

Phase b is _____

Phase c is

85. (continued)

85b. In fig. B, which addition(-s) at time d would result in the growth curve illustrated?					
	(1p)				
A. 0.05 g potassium cyanide.					
B. 0.05 g glucose.					
C. 0.05 g lactose.					
D. 0.05 g sodium pyruvate.					
E. 0.05 g sodium azide.					
86. In which order do the processes A-F take place in a eukaryotic cell?					
*	(2p)				
A. Peptidyl transfer					
B. Ribosome binding to RNA					
C. RNA polymerase binding to DNA					
D. Splicing					
E. Transcription					
F. Folding of the polypeptide chain					
Write the letters A-F in the correct order here:					

87. Suppose you want to clone a human gene that	is expressed in liver and is suspected to be
,	in Corpression in 1100 and 10 caspected to co
involved in a genetic disease.	
87a. Which of the following would be the best star	rting material?
	(1p)
A. A human genomic DNA librar	y C. Human cellular DNA
B. A human liver cDNA library.	D. A human tRNA library
87b. Regardless of your preference in question 87a	a, you are forced to use a human genomic library,
available as phage clones (no other material is ava	ilable). You have identified a particular phage
clone carrying the gene you are interested in, in a s	stretch of human DNA including at least 10 other
genes of no interest to you. What is the logical ord	er of subsequent steps in order to produce a clone
that carries just the gene that you are interested in	? The procedure outlined will not permit you to
identify your clone, just produce it.	
3,3	
A. cleave DNA with a restriction endonuclease	D. transform <i>Escherichia coli</i> cells
B. treat with DNA ligase	E. mix library DNA with vector (plasmid) DNA
C. extract DNA from starting material	F. heat mixture to inactivate enzyme
Write here the letters A-F in the order these steps	should be performed. You may need to perform
one or more steps more than once.	
- -	(2p)
	/-r /

Plant Anatomy & Physiology

88. What are the effects of these different plant hormones? Mark the correct alternatives with a cross (X). Mark only one hormone for each effect.

	Auxin	Gibberellin	Abscissic acid	Ethylene	Cytokinin
Delays the breakdown of					
chlorophyll					
Closes stomata					
Is active in phototropic responses	• .				
Can make long-day plant flower					
during short days					
Makes bananas yellow					

89 Only some of the processes 1-7 below	ow occur in extant plants. Name these proces	ses correctly by
writing the number of the process on the	he appropriate line.	
		(2 p)
1. DNA \rightarrow RNA	5. RNA \rightarrow protein	
2. DNA \rightarrow protein	6. Protein \rightarrow DNA	
$3. \text{ RNA} \rightarrow \text{DNA}$	7. Protein \rightarrow RNA	
$4. \mathrm{DNA} \to \mathrm{DNA}$		
Replication is process no		
Reverse transcription is process no		
Transcription is process no		
Translation is process no		

Animal Anatomy & Physiology

90. M	atch each	of the fol	lowing ele	ements, 1	isted belo	v, with	its corresp	onding ma	ss percent	age in
the hu	ıman body	/ .								

(2p)

mass percentages 1 - 3 - 10 - 18 - 65

.....% C

Н%

N%

O%

.....% P

91. Compare marine fish to freshwater fish with respect to the following statements! Mark with a cross (X) the correct fish type for each statement.

(2p)

	Marine fish	Freshwater fish
Higher water intake		
Excrete salts across their gills		
Absorb salts through specialized cells in their gills		
Have relatively dilute urine		

92. Deleted

Genetics & Evolution

93. A human disease was shown to be due to a recessive mutant allele, denoted a . Child	iren with
genotype aa all die before the age of 10. AA- and Aa-individuals have the same fitness.	In one
generation (generation G_0) of an isolated population, the frequency of the allele a was G_0).0100
among adults.	
93a. If no new mutations arise, what is the frequency of heterozygous carriers (Aa) among the state of t	ong new-
born babies in the next generation (generation G ₁)? Give your answer to four places of	decimals
	(1p)
Answer:	
93b. What is the frequency of the allele a among adults in the next generation (generation)	ion G ₁)?
Give your answer to four places of decimals.	
	(1p)
Answer:	

94. An archaeologist discovered a sample of mammoth flesh frozen in ice in the Siberian taiga. She
wanted to test how similar DNA from this flesh was to DNA from present-day Indian elephants.
Choose among the following techniques those appropriate for this task, and list the techniques you
have chosen, in the correct order of performing the analysis.
A. Carry out DNA electrophoresis.
B. Transform mammoth DNA into elephant cells.
C. Subject the mammoth specimen to amniocentesis.
D. Use the polymerase chain reaction on mammoth and elephant DNA.
E. Carry out restriction enzyme digestion of DNA.
F. Hydrolyze mammoth and elephant DNA with acid.
G. Analyse the karyotype of the mammoth specimen.
Write the letters designating the appropriate techniques in the correct order on the dotted line.
(2p)
Correct order:

95. The sex determination system in the insect order Hymenoptera (ants, bees and wasps) is such that males are haploid (n) and females (queens and workers) are diploid (2n).

Microsatellites are short tandem repeats of one to six nucleotides. The number of repeats often varies from one individual to another, and a given number of repeats constitutes an allele of that particular microsatellite locus. Microsatellites are common throughout most eukaryotic genomes.

In an experiment, microsatellite DNA fragments from 10 ant workers (numbered 1-10 below), all from the same mound of *Formica sp.*, were tested. In this species there is only one queen per mound, but she can mate with one or more males.

Two microsatellite loci were amplified separately by means of PCR, using primers complementary to regions outside the microsatellite itself. The amplified DNA was radioactively labelled. The fragments were then separated by means of electrophoresis in a polyacrylamide gel. Under these conditions DNA will move towards the anode, the faster the smaller it is. After concluding the electrophoresis, a photographic film was placed on top of the gel. The film then darkened at places where there were radioactive DNA fragments. The results are shown below.

Individual:	1	2	3	4	5	6	7	8	9	10
Locus 1:	-	-	-		-	-		-	-	-
	-		-	-	-		•	-	-	-
Individual:	1	2	3	4	5	6	7	8	9	10
Locus 2:		-	-			-	-	-		
	-			-	-		-		-	-
	-	-			-	-			-	

95. (continued)

95a. How many alleles are there at each of the two loci?	
	(1p)
Locus 1:	
Locus 2:	
95b. What is the minimum number of males with whom this queen has mated, judging	from the
results of amplification of locus 1?	
	(1p)
Answer:	
·	
95c. What is the minimum number of males with whom this queen has mated, judging	from the
results of amplification of locus 2?	
	(1p)
Answer:	

96. For	what pioneering contributions are the geneticists A-F known? (In brackets the year when
their res	pective discovery was presented, at a meeting and / or in a printed publication.) After each
of the de	escriptions I-VI, write the letter (A-F) of the person(s) known for this advance.
	(2p)
A	Gregor Mendel (1865/1866)
В	Thomas H Morgan (1910)
C	Herman J Muller (1927)
D	Oswald T Avery, Colin M MacLeod & Maclyn McCarty (1944)
E	Barbara McClintock (1950)
F	James Watson & Frances Crick (1953)
I	Studied the X-ray diffraction pattern of DNA and concluded that DNA has a double-
	stranded and helical structure.
Answer	:
П	Showed that X-rays induce mutations.
Answer	·
III	From studies of unstable loci in maize (Zea mays), concluded that some genetic elements
	now called transposons, are mobile in the genome.
Answei	::

96. (continued)

IV	From experiments with <i>Streptococcus</i> (at that time called <i>Pneumococcus</i>) concluded that genes are made of DNA.
Answer:	
V	From experiments with the garden pea (<i>Pisum sativum</i>), concluded that the hereditary "factors" are derived in pairs from the parents and are segregated unchanged to the germ cells. The hereditary "factors" do not blend. Coined these terms: dominant and recessive.
Answer	·
VI	Discovered X-linked inheritance in the fruit fly (<i>Drosophila melanogaster</i>). One of his students, Calvin Bridges, later demonstrated that genes are contained in the chromosomes. Another of his students, Alfred H Sturtevant ("that young Sturtevant!") was able to interpret experimental data that were due to linkage of genes in a chromosome. Sturtevant used these data for gene mapping.
Answer	:

Ecology

97. A student wished to estimate the size of a population of woodlice (terrestrial Isopoda) under a log. She captured 40 woodlice, marked and then released them and allowed them to thoroughly mix with the rest of the population. After 24 hours, once again she captured 40 woodlice. Of the newly captured woodlice, only 16 were marked. Assume that no woodlice were born, died, immigrated to or emigrated from the population during the past 24 hours. Estimate the number of woodlice in the population.

(2p)

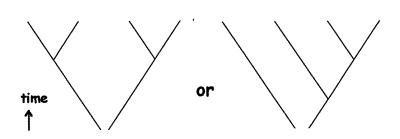
The number of woodlice in the population is estimated to be

98. According to the equilibrium theory of island biogeography, the number of species on an island is determined by the balance between frequency of extinctions on the island and frequency of new species colonizing the island. The theory says that the larger an island is, the more seldom will species go extinct. It also says that the closer an island is to the mainland from which new colonists may come, the more often will colonizers arrive at the island. As a result the number of species will be at or near an equilibrium level where extinctions and colonizations take place equally often. But there will also be a change of the particular species which are found on the island at a given time. This change is called species turnover, and turnover rate is the sum of extinction rate and colonization rate.

Of four islands differing in size and distance to mainland, which will have high and low species number and which will have high and low species turnover rate? Write on the dotted lines the digit (I-IV) of the appropriate description.

- I. most species, intermediate turnover rate
- II. intermediate species number, lowest turnover rate
- III. fewest species, intermediate turnover rate
- IV. intermediate species number, highest turnover rate
- a) A large island close to the mainland has.....
- b) A large island far away from the mainland has
- c) A small island close to the mainland has
- d) A small island far away from the mainland has

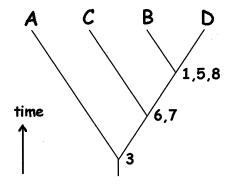
Systematics


99. Systematists use the so called cladistic method to find evolutionary relationships. Organisms are first described in terms of specific characters, as shown in the table below.

Character		frog (A)	bat (B)	duck (C)	anteater (D)
1	mammary glands	_	+		+ '
2	wings		+ '	+	_
3	fingers and toes	+	+	+	+
4	sticky tongue	+			+
5	three ear ossicles		+		+
6	endothermy		+	+	+
7	diaphragm		+	+	+
8	placenta		+		+

You will see that some characters are shared by two or more organisms, which indicates that these organisms may be related. However, shared similarities may also be the result of convergent

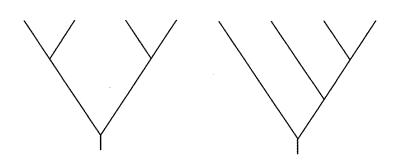
evolution, and be misleading when we try to reconstruct the evolutionary relationships of a group of organisms. Only similarities that are due to common descent can be true indicators of relationship. Shared similarities may also be the result of common descent from an ancestor having the property in question. Such characters say nothing about the pattern of evolutionary branching from this ancestor. In order to distinguish primitive characters from those that have evolved more recently, cladistic analysis uses a concept called outgroup comparison. An outgroup is a species or group that is relatively closely related to the group studied, but clearly not as closely related as the study-group members are to each other.


The organisms are then grouped together on simple branched trees called cladograms. With four groups of organisms the shape of the cladogram may be:

The best cladogram is the one in which the pattern of branches most closely reflects the character distribution among the organisms. In most cases, the criterion used is **parsimony**, meaning that the simplest explanation is preferred. This results in a cladogram showing the fewest number of independent changes.

Characters are mapped onto the cladogram at the base of the group of organisms that share that character.

In this case the best cladogram out of 15 possibilities is:



Using this knowledge you have to find the appropriate cladogram that fits to four species indicated by P, Q, R and S, which have the following similarities:

- only P and Q are abundant in the desert
- 2 only R and S produce seeds
- all four have chlorophyll
- 4 only P and Q have spores
- 5 all have vascular tissues with the exception of P
- 6 only R and S produce flowers
- only in Q, R and S is the sporophyte the dominant generation
- 8 only P does not have roots

The task is to choose the cladogram with the correct shape, to fill out P, Q, R and S at the end of the correct branches, and to indicate the correct similarities at the start of the branches.

(3p)

10th International Biology Olympiad

1999-07-04--11

Answer key to the theoretical test

Part A

1. B	24a. B
2. C	24b. A
3a. A	25. D
3b. C	26. C
3c. A	27. C
4. B	28a. B
5. C	28b. D
6. B	28c. C
7. A	29. C
8. D	30. A
9. B	31. A
10. B	(deleted)
11a. E	33. C
11b. B	34. B
12. B	35a. D
13. B	35b. B
14. D	35c. C
15. C	36a. A
16. E	36b. A
17. B	36c. C
18. D	37. (deleted)
19. (deleted)	38. (deleted)
20a. B	39. B
20b. D	40. B
20c. C	41. A
20d. A	42. B
21. B	43. B
22. (deleted)	44. C
23. B	45. D

Part B

46. B	56a. A
47. B	56b. A
48. B, C, E	56c. C
49. B	56d. A, C
50. A, B	57. B, E, G, I
51. B, E	58. B, C
52. A, B, (C), E	59. B, C
53. B	60. B
54. (deleted)	61. A, D
55. (deleted)	62. B, C, F

63. A, B, C, E
64. A, D, E
65. D
66. B
67a. A, B, D
67b. E
67c. B
68. C, D
69. B, E
70 P.C.U

71.	B, C, (D)
72.	A, B, C, D
73.	A, C
74.	A, B, C, D
75.	A, B, C, E
76.	A, B, C, E
77.	C, E
78.	(deleted)
79.	C, E, F
80.	A, B, D, F

Avdelning C

81a.C C = 1p, C + an other = 1p

81b.Chromosome 1: I

Chromosome 3:III, V

Chromosome 8:

Chromosome 17: IV

82a. No. histone molecules: 90

No. non-histone molecules: 41

82b.1,31 x 10⁹

82c.0,00015%

Constituent	Only in plant cells	Only in animal cells	Contains DNA	Forms Starch	Is photo- synthetic	Is coloured
Chloroplast	х		X	X	X	X
Ribosome						
Proplastid	х		X			
Endoplasmatic						
Reticulum						
Microfilament						
Mitochondrion			X			
Nucleus			X			
Cell wall	x					
Golgi apparatus						

9-10 R = 2p 5-8 R = 1p 1-2 F = -1p Several faults 0

84.								
	Treatment							
	Temperature raised by 30°	Temperature reduced by 30°		Lysozyme Added	Protease added	Cyanide added	ATP added	Pyruvate added
Effect								
The membranes Are destroyed	x		X					
The membranes Solidify		x						
Electron transport Starts running "backwards" so that ATP is consumed								
Electron transport to Oxygen is blocked						x		
The compound is Taken up and Oxidized								х
Nothing happens				X	х		х	

85a. Phases a is 3

Phases b is 2

Phases c is 4

85b. B, C, D

86. CEDBAF

87a) B

87b). C, E, A, F, B, (F), D

88.

		Abscissic			
Auxin	Gibberellin	acid	Ethylene	Cytokinin	

Delays the breakdown of chlorophyll					х
Closes stomata			х		
Is active in phototropic responses	х				
Can make long-day plant flower					
During short days		X			
Makes bananas yellow				x	

5R = 2p

3-4 R = 1p

89. Replication is process nr (Reverse transcription is process nr 3)
Transcription is process nr 1
Translation is process nr 5

3

90. C 18%

H 10%

N 3%

O 65%

P 1%

91.

	Marine fish	Freshwater fish
Higher water intake	<u>X</u>	
Excrete salts across their gills	x	
Absorb salts through specialized cells in their gills		X
Have relatively dilute urine		X

c) IV d) III

4R = 2p

Allt R = 3p

99. Exakt svar enligt figuren

2-3R = 1p

$$4R = 2p$$
 $2 - 3R = 1p$

92 (deleted)

93a. 0.0198

93ь. 0.0099

94. DEA **DEA = 2p**

95a. Locus 1: 2

Locus 2: $3 \mathbf{R} = \mathbf{1} \mathbf{p}$

95b. 2 R = 1p

95c. 3 R = 1p

96. I F

II C

III E

IV D

V A

 $VI B \\ 6R = 2p$

4-5R = 1p

97. 100

R = 2p

98. a) I

b) II