

LONG QUESTIONS: MARKING SCHEME

1. A moon is orbiting a planet such that the plane of its orbit is perpendicular to the surface of the planet where an observer is standing. After some necessary scaling, suppose the orbit satisfies the following equation:

$$9\left(\frac{x}{2} + \frac{\sqrt{3}y}{2} - 4\right)^2 + 25\left(-\frac{\sqrt{3}x}{2} + \frac{y}{2}\right)^2 = 225$$

Consider Cartesian coordinates where x is on the horizontal plane and y is on the zenith of the observer. Let r be the radius of the moon. Assume that the period of rotation of the planet is much larger than the orbital period of the moon. Ignore the atmospheric refraction.

- a. Calculate the semimajor and semiminor axis of the ellipse.
- b. Calculate the zenith angle of perigee.
- c. Determine $\tan \frac{\theta}{2}$ where θ is the elevation angle (altitude of the upper tangent of the moon) when the moon looks largest to the observer.

Figure 1

Answer and Marking Scheme:

1. Polar version

(a)	Rewrite the orbit equation using polar coordinate	
	$x = R(\alpha) \cos \alpha$	
	$y = R(\alpha) \sin \alpha$	
	Thus, if we let	
	π π x $y\sqrt{3}$	
	$x^{*} = R(\alpha) \cos\left(\alpha - \frac{1}{3}\right) = \frac{1}{2} + \frac{1}{2}$	
	$x = p(x) + (x = \pi) + x\sqrt{3} + y$	
	$y' = R(\alpha) \sin\left(\alpha - \frac{1}{3}\right) = -\frac{1}{2} + \frac{1}{2}$	10
	the equation of the orbit can be written as	
	$9\left(R(\alpha)\cos\left(\alpha-\frac{\pi}{3}\right)-4\right)^2+25\left(R(\alpha)\sin\left(\alpha-\frac{\pi}{3}\right)\right)^2=225$	
	$9(x^* - 4)^2 + 25(y^*)^2 = 225$	10
	Determine semi major and semi minor axis of the orbit	
	Since	
	$9(x^* - 4)^2 + 25(y^*)^2 = 225$	
	is equivalent to	
	$\frac{(x^*-4)^2}{2^2} + \frac{(y^*)^2}{2^2} = 1$	
	25 9	-
	the semi minor axis is 2	э г
(h)	Determine the registre angle at perigon	20
(u)	Determine the zenith angle at perigee π	20
	At the perigee, $\alpha - \frac{1}{3} = \pi$. Thus, the zenith angle at the	
	perigee is	
	$\alpha - \frac{\pi}{2} = \pi + \frac{\pi}{2} - \frac{\pi}{2} = \frac{5\pi}{2}$	
	*	

2. Cartesian version

(a)	Notice the standard version of the orbits x_{y}	
	Simplify the equation by introducing new variables	
	$x^* = \frac{x}{2} + \frac{\sqrt{3}y}{2} = x\cos\frac{\pi}{3} + y\sin\frac{\pi}{3}$	10
	$y^* = -\frac{\sqrt{3}x}{2} + \frac{y}{2} = x\sin\left(-\frac{\pi}{3}\right) + y\cos\frac{\pi}{3}$	
	Write the orbit equation in terms new variables $9(x^* - 4)^2 + 25(y^*) = 225$	10
	-2	
	Determine semi major and semi minor axis of the orbit	
	Since	
	$9(x^* - 4)^2 + 25(y^*)^2 = 225$	
	is equivalent to	
	$\frac{(x^*-4)^2}{(x^*-4)^2} + \frac{(y^*)^2}{(y^*)^2}$	
	The semi major axis is 5	5
	The semi major axis is 3	5
(b)	Determine the zenith angle at perigee	20
	Since the original ellipse may be obtained from standard ellipse $\frac{(x^* - 4)^2}{25} + \frac{(y^*)^2}{9} = 1$ by $\pi/3$ counterclockwise rotation respect to the origin, the the zenith angle at perigee is equal to π π 5π	
	$\pi + \frac{1}{3} - \frac{1}{2} = \frac{1}{6}$	
(c)	Characterize the coordinates of the moon when it looks largest to the observer.	
	Let $P(x_0, y_0)$ be the point where it looks largest to the observer. Since the distance	
	between the moon and the observer decreases as it moves from apogee towards perigee,	
	then the moon looks largest to the observer at the planet when it closest to the planet	10
	while the whole of the moon still can be seen in full. Hence, $y_0 = r$.	
	Find x_0 .	
	$9\left(\frac{x_0}{2} + \frac{\sqrt{3}r}{2} - 4\right)^2 + 25\left(-\frac{\sqrt{3}x_0}{2} + \frac{r}{2}\right)^2 = 225$	
	Rewrite it as a quadratic equation in x .	
	$9(x_0 + r\sqrt{3} - 8)^2 + 25(-x_0\sqrt{3} + r)^2 = 900$	
	$\left(9x_0^2 + (18\sqrt{3}r - 144)x_0 + 27r^2 - 144\sqrt{3}r + 576\right) + (75x_0^2 - 50\sqrt{3}rx_0 + 25r^2)$	
	= 900	

3. Cartesian version

(a)	Notice the standard version of the orbits	
	Simplify the equation by introducing new variables	
	$x^* = \frac{x}{2} + \frac{\sqrt{3}y}{2} = x\cos\frac{\pi}{3} + y\sin\frac{\pi}{3}$ $y^* = -\frac{\sqrt{3}x}{2} + \frac{y}{2} = x\sin\left(-\frac{\pi}{3}\right) + y\cos\frac{\pi}{3}$	10
	Write the orbit equation in terms new variables	10
	$9(x^* - 4)^2 + 25(y^*) = 225$	10
	Determine semi major and semi minor axis of the orbit	
	Since	
	$9(x^* - 4)^2 + 25(y^*)^2 = 225$	
	is equivalent to	
	$\frac{(x^*-4)^2}{(y^*)^2} + \frac{(y^*)^2}{(y^*)^2} =$	
	25 9	_
	The semi major axis is 5	5
	The semi major axis is 3	5
(b)	Notice the standard version of the orbits	20
	Since the original ellipse may be obtained from standard $[(x,y)_{a}]$	
	ellipse $\frac{(x^* - 4)^2}{25} + \frac{(y^*)^2}{9} = 1$ by counterclockwise $\pi/3$ rotation respect to the origin, the the zenith angle at perigee is $\pi + \frac{\pi}{2} - \frac{\pi}{2} = \frac{5\pi}{6}$	

2. Two massive stars A and B with masses m_A and m_B are separated by a distance *d*. Both stars orbit around their center of mass under gravitational force. Assume their orbits are circular and lie on the X-Y plane whose origin is at the stars' center of mass (see Figure 2)

a. Find the expressions for the tangential and angular speeds of star A.

An observer standing on the Y-Z plane (see Figure 2) sees the stars from a large distance with an angle θ relatively to the Z-axis. He measures that the velocity component of star A to his line of sight has the form $K \cos(\omega t + \varepsilon)$, where K and ε are positive.

b. Express $K^3/\omega G$ in terms of m_A , m_B , and θ where G is the universal gravitational constant.

Assume that the observer then identifies that star A has mass equal to $30M_S$ where M_S is the Sun's mass. In addition, he observes that star B produces X-rays and then realizes that it could be a neutron star or a black hole. This conclusion would depend on m_B , i.e.: i) If $m_B < 2M_S$, then B is a neutron star; ii) If $m_B > 2M_S$, then B is a black hole.

c. A measurement by the observer shows that $\frac{K^3}{\omega G} = \frac{1}{250}M_S$. In practice, the value of θ is usually not known. What is the condition on θ for star B to be a black hole?

Answer and Marking Scheme:

a.The center of gravity of the stars is relatively to the star A given by
$$r_A = \frac{m_B}{m_A + m_B} d$$

and since the orbit of A is a circle, then
 $F_{AX} = \frac{Gm_A m_B}{d^2} = \frac{m_A v_A^2}{r_A}$
So, we get
 $v_A = m_B \sqrt{\frac{\sigma}{(m_A + m_B)d}}$
The angular velocity of A is given by
 $\omega = \frac{v_A}{r_A} = \sqrt{\frac{G(m_A + m_B)}{d^3}}$ 30b.In Cartesian coordinate system, the velocity of A is
 $\vec{v}_A(t) = v_A(-\sin(\omega t + \varepsilon) \hat{t} + \cos(\omega t + \varepsilon) f)$
Unit vector of the observer is
 $\hat{r}_P = \cos \theta \hat{k} + \sin \theta \hat{f}$
so the component of \vec{v}_A in the line of the observer sight is given by
 $\vec{v}_A \cdot \hat{r}_P = v_A \sin \theta \cos(\omega t + \varepsilon)$
Since the component of \vec{v}_A in the line of the observer sight is $K \cos(\omega t + \varepsilon)$, then
 $K = v_A \sin \theta$
Finally, we have $\frac{K^3}{\omega G} = \frac{m_B^3}{(m_A + m_B)^2} \sin^2 \theta$
(**)40c.From the result in b., namely eq. (**), we get
 $\sin^3 \theta = \frac{K^3}{\omega G} \frac{(m_A + m_B)^2}{m_B^3} < \frac{125}{250} \frac{32^2}{8} = \frac{64}{125}$
Since $\theta \in [0, \pi]$, then $\sin \theta < 0.8$. Thus, the probability of B is a black hole is the same as the
probability of $\sin \theta < 0.8$ for $\theta \in [0, \pi]$. So θ is less than 53° or greater than 127°.40

INTERNATIONAL OLYMPIAD ON ASTRONOMY AND ASTROPHYSICS Central Java - Indonesia

3. Suppose a static spherical star consists of *N* neutral particles with radius *R* (see Figure 3).

with $\ 0 \leq heta \leq \pi$, $0 \leq \phi \leq 2\pi$, satisfying the following equation of states

$$P V = N k \frac{T_R - T_0}{\ln(T_R / T_0)}$$
(1)

where *P* and *V* are the pressure inside the star and the volume of the star respectively, *k* is the Boltzmann constant. T_R and T_0 are the temperatures at the surface r = R and the temperature at the center r = 0 respectively. Assume that $T_R \leq T_0$.

a. Simplify the stellar equation of state (1) if $\Delta T = T_R - T_0 \approx 0$ (this is called ideal star) (Hint: Use the approximation $\ln(1 + x) \approx x$ for small x)

Suppose the star undergoes a quasi-static process, in which it may slightly contract or expand, such that the above stellar equation of state (1) still holds.

The star satisfies first law of thermodynamics

$$Q = \Delta M c^2 + W \tag{2}$$

where Q, M, and W are heat, mass of the star, and work respectively, while c is the light speed in the vacuum and $\Delta M \equiv M_{\text{final}} - M_{\text{initial}}$.

In the following we assume T_0 to be constant, while $T_R \equiv T$ varies.

b. Find the heat capacity of the star at constant volume C_v in term of M and at constant pressure C_p expressed in C_v and T (Hint: Use the approximation $(1 + x)^n \approx 1 + nx$ for small x)

Assuming that C_{v} is constant and the gas undergoes the isobaric process so the star produces the heat and radiates it outside to the space.

c. Find the heat produced by the isobaric process if the initial temperature and the final temperature are T_i and T_f , respectively.

d.

For the next parts, assume the star is the Sun.

- e. If the sunlight is monochromatic with frequency 5×10^{14} Hz, estimate the number of photons radiated by the Sun per second.
- f. Calculate the heat capacity C_v of the Sun assuming its surface temperature varies from 5500 K to 6000 K in one second.

Answer and Marking Scheme:

a. Defining
$$\Delta T = T_R - T_0$$
 and $\Delta T \approx 0$, we have
 $P V = N k \frac{\Delta T}{\ln(1 + \Delta T/T_0)}$ 15 $V = N k \frac{\Delta T}{\ln(1 + \Delta T/T_0)}$ (3)using $\ln(1 + \Delta T/T_0) \approx \Delta T/T_0$, we then obtain
 $P V = N k T_0$ (4)**b.** The internal energy of the star is $U = Mc^2 (U(T) = M(T)c^2$ for ideal star). Thus, the constant
volume heat capacity of the star has the form
 $C_v = \left(\frac{\Delta Q}{\Delta T}\right)_V = \left(\frac{\Delta M}{\Delta T}\right)_V c^2$
for small ΔT . Then, using first law of themodynamics, the constant pressure
heat capacity of the star is
 $C_p = \left(\frac{\Delta Q}{\Delta T}\right)_P = \left(\frac{\Delta M}{\Delta T}\right)_V c^2 + P \frac{\Delta V}{\Delta T} = C_v + P \frac{\Delta V}{\Delta T}$
for small ΔT . Defining $\Delta T = T_2 - T_1$, then

