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LONG QUESTIONS: MARKING SCHEME 

 

1. A moon is orbiting a planet such that the plane of its orbit is perpendicular to the surface of the 

planet where an observer is standing. After some necessary scaling, suppose the orbit satisfies the 

following equation: 

9 (
𝑥

2
+

√3𝑦

2
− 4)

2

+ 25 (−
√3𝑥

2
+

𝑦

2
)

2

= 225 

Consider Cartesian coordinates where x is on the 

horizontal plane and y is on the zenith of the observer. Let   r  

𝑟 be the radius of the moon. Assume that the period of 

rotation of the planet is much larger than the orbital 

period of the moon. Ignore the atmospheric refraction. 

a. Calculate the semimajor and semiminor axis of the 

ellipse. 

b. Calculate the zenith angle of perigee. 

c. Determine tan
𝜃

2
 where 𝜃 is the elevation angle 

(altitude of the upper tangent of the moon) when the 

moon looks largest to the observer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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Answer and Marking Scheme: 

1. Polar version 

(a) Rewrite the orbit equation using polar coordinate 
𝑥 = 𝑅(𝛼) cos 𝛼 
𝑦 = 𝑅(𝛼) sin 𝛼 

Thus, if we let  

𝑥∗ = 𝑅(𝛼) cos (𝛼 −
𝜋

3
) =

𝑥

2
+

𝑦√3

2
 

𝑦∗ = 𝑅(𝛼) sin (𝛼 −
𝜋

3
) = −

𝑥√3

2
+

𝑦

2
 

the equation of the orbit can be written as 

9 (𝑅(𝛼) cos (𝛼 −
𝜋

3
) − 4)

2

+ 25 (𝑅(𝛼) sin (𝛼 −
𝜋

3
))

2

= 225 

9(𝑥∗ − 4)2 + 25(𝑦∗)2 = 225 

 
 
 
 
 
 
 
10 
 
 
 
10 

 Determine semi major and semi minor axis of the orbit 
Since  

9(𝑥∗ − 4)2 + 25(𝑦∗)2 = 225 
is equivalent to  

(𝑥∗ − 4)2

25
+

(𝑦∗)2

9
= 1 

then, the semi major axis is 5, and 
the semi minor axis is 3 

 
 
 
 
 
 
5 
5 

(b) Determine the zenith angle at perigee 

At the perigee, 𝛼 −
𝜋

3
= 𝜋. Thus, the zenith angle at the 

perigee is  

𝛼 −
𝜋

2
= 𝜋 +

𝜋

3
−

𝜋

2
=

5𝜋

6
 

. 

20 
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(c) Characterize the coordinates of the moon when it looks largest to the observer. 
Let 𝑃(𝑥0, 𝑦0) be the point where it looks largest to the observer. Since the distance 
between the moon and the observer decreases as it moves from apogee towards perigee, 
then the moon looks largest to the observer at the planet when it closest to the planet 
while the whole of the moon still can be seen in full.  Hence, 𝑦0 = 𝑟.  

 
𝑦0 = 𝑟 = 𝑅(𝜋 − 𝛼0𝛼0) sin(𝜋 − 𝛼0) = 𝑅0 sin(𝜋 − 𝛼0) 
𝑥0 = 𝑅0 cos(𝜋 − 𝛼0) 

 
 
 
 
 
 
 
 
 
10 

 Determine the coordinates of the point.  
Let the coordinate be (𝑥0, 𝑟) .  

9 (
𝑥0

2
+

√3𝑟

2
− 4)

2

+ 25 (−
√3𝑥0

2
+

𝑟

2
)

2

= 225 

Rewrite it as a quadratic equation in 𝑥0. 

9(𝑥0 + 𝑟√3 − 8)
2

+ 25(−𝑥0√3 + 𝑟)
2

= 900 

84(𝑥0)2 + (−32√3𝑟 − 144)𝑥0 + (52𝑟2 − 144√3𝑟 + 576 = 900 ) 

 
Solving for 𝑥, we get  

𝑥0 =
4𝑟√3 + 18

21
±

15√−𝑟2 + 4𝑟√3 + 9  

21
 

Then choose the smaller one  

𝑥0 =
4𝑟√3 + 18

21
−

15√−𝑟2 + 4𝑟√3 + 9  

21
 

 
 
 
 
 
 
 
 
20 
 
 
 
 
 
10 

 Find 𝐭𝐚𝐧
𝜽

𝟐
. Hence 

tan
𝜃0

2
= tan 𝛼0 =

𝑟

𝑥0
=

21𝑟

4𝑟√3 + 18 − 15√−𝑟2 + 4𝑟√3 + 9  
 

10 

 

 

 

2. Cartesian version 
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(a) Notice the standard version of the orbits  
Simplify the equation by introducing new variables 

𝑥∗ =
𝑥

2
+

√3𝑦

2
= 𝑥 cos

𝜋

3
+ 𝑦 sin

𝜋

3
 

𝑦∗ = −
√3𝑥

2
+

𝑦

2
= 𝑥 sin (−

𝜋

3
) + 𝑦 cos

𝜋

3
 

Write the orbit equation in terms new variables 
9(𝑥∗ − 4)2 + 25(𝑦∗) = 225 

 
 
 
10 
 
 
 
10 

 Determine semi major and semi minor axis of the orbit 
Since  

9(𝑥∗ − 4)2 + 25(𝑦∗)2 = 225 
is equivalent to  

(𝑥∗ − 4)2

25
+

(𝑦∗)2

9
= 

The semi major axis is 5 
The semi major axis is 3 

 
 
 
 
 
 
5 
5 

(b) Determine the zenith angle at perigee 
 
Since the original ellipse may be obtained from standard 
ellipse 

(𝑥∗ − 4)2

25
+

(𝑦∗)2

9
= 1 

by 𝜋/3  counterclockwise rotation respect to the origin, the 
the zenith angle at perigee is equal to  

𝜋 +
𝜋

3
−

𝜋

2
=

5𝜋

6
 

20 

(c) Characterize the coordinates of the moon when it looks largest to the observer. 
Let 𝑃(𝑥0, 𝑦0) be the point where it looks largest to the observer. Since the distance 
between the moon and the observer decreases as it moves from apogee towards perigee, 
then the moon looks largest to the observer at the planet when it closest to the planet 
while the whole of the moon still can be seen in full.  Hence, 𝑦0 = 𝑟. 

 
 
 
10 

 Find 𝒙𝟎.  

9 (
𝑥0

2
+

√3𝑟

2
− 4)

2

+ 25 (−
√3𝑥0

2
+

𝑟

2
)

2

= 225 

Rewrite it as a quadratic equation in 𝑥. 

9(𝑥0 + 𝑟√3 − 8)
2

+ 25(−𝑥0√3 + 𝑟)
2

= 900 

(9𝑥0
2 + (18√3𝑟 − 144)𝑥0 + 27𝑟2 − 144√3𝑟 + 576) + (75𝑥0

2 − 50√3𝑟𝑥0 + 25𝑟2)

= 900 
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84(𝑥0)2 + (−32√3𝑟 − 144)𝑥0 + (52𝑟2 − 144√3𝑟 + 576 ) = 900 

Solving it for 𝑥  we get   

𝑥0 =
4𝑟√3 + 18

21
±

15√−𝑟2 + 4𝑟√3 + 9  

21
 

Then choose the smaller one  

𝑥0 =
4𝑟√3 + 18

21
−

15√−𝑟2 + 4𝑟√3 + 9  

21
 

 
 
 
20 
 
 
 
 
10 

 Find 𝐭𝐚𝐧
𝜽

𝟐
. Hence 

tan
𝜃

2
= tan 𝛼0 =

𝑟

𝑥0
=

21𝑟

4𝑟√3 + 18 − 15√−𝑟2 + 4𝑟√3 + 9  
 

10 

 

3. Cartesian version 

(a) Notice the standard version of the orbits  
Simplify the equation by introducing new variables 

𝑥∗ =
𝑥

2
+

√3𝑦

2
= 𝑥 cos

𝜋

3
+ 𝑦 sin

𝜋

3
 

𝑦∗ = −
√3𝑥

2
+

𝑦

2
= 𝑥 sin (−

𝜋

3
) + 𝑦 cos

𝜋

3
 

Write the orbit equation in terms new variables 
9(𝑥∗ − 4)2 + 25(𝑦∗) = 225 

 
 
 
10 
 
 
 
10 

 Determine semi major and semi minor axis of the orbit 
Since  

9(𝑥∗ − 4)2 + 25(𝑦∗)2 = 225 
is equivalent to  

(𝑥∗ − 4)2

25
+

(𝑦∗)2

9
= 

The semi major axis is 5 
The semi major axis is 3 

 
 
 
 
 
 
5 
5 

(b) Notice the standard version of the orbits 
Since the original ellipse may be obtained from standard 
ellipse 

(𝑥∗ − 4)2

25
+

(𝑦∗)2

9
= 1 

by counterclockwise 𝜋/3 rotation respect to the origin, the 

the zenith angle at perigee is  𝜋 +
𝜋

3
−

𝜋

2
=

5𝜋

6
 

 

20 
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(c) Identify and characterized the coordinates when the planet looks largest. 
Since the distance between the moon and the observer 
decreases as it moves from apogee towards perigee, then 
the moon looks largest to the observer at the planet when 
it closest to the planet while the whole of the moon still 
can be seen in full.  Hence, it is at necessary that 𝑦 = 𝑟.  
Let the coordinates be (𝑥0, 𝑟).  
 

 
 
 
 
 
 
 
10 

 Obtain expression for calculating distance from a point on an ellipse to the foci to set up 
an equation  
Consider standard ellipse  

(𝑥∗ − 4)2

52
+

(𝑦∗)2

32
= 1 

Choose any point (𝑥∗, 𝑦∗) on the ellipse. Let 𝑑1 and 𝑑2 be the distances from any point 

(𝑥∗, 𝑦∗) on the ellipse to the foci (0,0) and 𝑑(8,0);  𝑑1
2 = (𝑥∗)2 + (𝑦∗)2 and 𝑑2

2 =
(𝑥∗ − 8)2 + (𝑦∗)2 
Thus,  

𝑑1
2 = (𝑥∗)2 + (𝑦∗)2 = (𝑥∗)2 + (9 −

9(𝑥∗ − 4)2

52 ) =
(16(𝑥∗)2 + 72𝑥∗ + 81)

25
 

Therefore 

𝑑1
2 =

(16(𝑥∗)2 + 72𝑥∗ + 81)

25
= 𝑥2 + 𝑟2 

where  𝑥∗ =
𝑥

2
+

𝑟√3

2
. Therefore, we can obtain the value of 𝑥 by solving the above equation   

for 𝑥. 

 
 
 
 
 
 
 
 
 
 
 
 
 
10 

 Solve equation  
(16(𝑥∗)2+72𝑥∗+81)

25
= 𝑥2 + 𝑟2 to obtain value of 𝑥. 

Substituting  𝑥∗ =
𝑥

2
+

𝑟√3

2
  to the equation, we have 

25𝑑1
2 = 25𝑥2 + 25𝑟2 = 16 (

𝑥

2
+

𝑟√3

2
)

2

+ 72 (
𝑥

2
+

𝑟√3

2
) + 81 = 

or 

25𝑥2 + 25𝑟2 = 4𝑥2 + (8𝑟√3 + 36)𝑥 + (12𝑟2 + 36√3𝑟 + 81) 

21𝑥2 − (8𝑟√3 + 36)𝑥 + (13𝑟2 − 36𝑟√3 − 81) = 0 

Then use quadratic formula to obtain 𝑥 in term of 𝑟. Choose smaller value of 𝑥 to get larger 

value of tan
𝜃

2
=

𝑟

𝑥
. The smaller one is 

𝑥 =
4𝑟√3 + 18

21
−

15√−𝑟2 + 4𝑟√3 + 9  

21
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 7 / 13 
 

 20 

 Find the expression of  tan
𝜃

2
 . 

Hence 

tan
𝜃

2
=

𝑟

𝑥
=

21𝑟

4𝑟√3 + 18 − 15√−𝑟2 + 4𝑟√3 + 9  
 

 

10 
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2. Two massive stars A and B with masses 𝑚𝐴 and 𝑚𝐵 are separated by a distance d. Both stars 

orbit around their center of mass under gravitational force. Assume their orbits are circular 

and lie on the X-Y plane whose origin is at the stars’ center of mass (see Figure 2)  

 

Figure 2 

a. Find the expressions for the tangential and angular speeds of star A. 

An observer standing on the Y-Z plane (see Figure 2) sees the stars from a large distance with an 

angle 𝜃 relatively to the Z-axis. He measures that the velocity component of star A to his line of 

sight has the form 𝐾 𝑐𝑜𝑠(𝜔𝑡 + 𝜀), where K and 𝜀 are positive. 

b. Express 𝐾3/𝜔𝐺 in terms of 𝑚𝐴, 𝑚𝐵 , and 𝜃  where G is the universal gravitational constant.  

 

Assume that the observer then identifies that star A has mass equal to 30𝑀𝑆 where 𝑀𝑆 is the 

Sun’s mass. In addition, he observes that star B produces X-rays and then realizes that it could 

be a neutron star or a black hole. This conclusion would depend on 𝑚𝐵,  i.e.: 

i) If 𝑚𝐵 < 2𝑀𝑆, then B is a neutron star; ii) If 𝑚𝐵 > 2𝑀𝑆, then B is a black hole. 

c. A measurement by the observer shows that 
𝐾3

𝜔𝐺
=

1

250
𝑀𝑆. In practice, the value of 𝜃 is 

usually not known. What is the condition on 𝜃 for star B to be a black hole? 
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Answer and Marking Scheme: 

a. The center of gravity of the stars is relatively to the star A given by  

𝑟𝐴 =
𝑚𝐵

𝑚𝐴+𝑚𝐵
𝑑       

      and since the orbit of A is a circle, then  

𝐹𝐴𝑋 =
𝐺𝑚𝐴𝑚𝐵

𝑑2 =
𝑚𝐴𝑣𝐴

2

𝑟𝐴
  

   
 

      So, we get  

𝑣𝐴 =  𝑚𝐵√
𝐺

(𝑚𝐴+𝑚𝐵)𝑑
      

 
     The angular velocity of A is given by  

𝜔 =
𝑣𝐴

𝑟𝐴
=  √

𝐺(𝑚𝐴 + 𝑚𝐵)

𝑑3
 

    
 

30 

b. In Cartesian coordinate system, the velocity of A is  
𝑣𝐴(𝑡) =  𝑣𝐴(− sin(𝜔𝑡 + 𝜀) 𝑖̂ + cos(𝜔𝑡 + 𝜀) 𝑗̂) 

     Unit vector of the observer is  

�̂�𝑃 = cos 𝜃 �̂� + sin 𝜃 𝑗̂    
 

     so the component of �⃗�𝐴 in the line of the observer sight is given by 
�⃗�𝐴 ∙ �̂�𝑃 =  𝑣𝐴 sin 𝜃 cos(𝜔𝑡 + 𝜀)   

 
     Since the component of �⃗�𝐴 in the line of the observer sight is 𝐾 𝑐𝑜𝑠(𝜔𝑡 + 𝜀), then 

𝐾 = 𝑣𝐴 sin 𝜃     
    Finally, we have 

𝐾3

𝜔𝐺
=

𝑚𝐵
3

(𝑚𝐴 + 𝑚𝐵)2
sin3 𝜃 

 (**) 
 

30 

c. From the result in b., namely eq. (**), we  get 

sin3 𝜃 =
𝐾3

𝜔𝐺

(𝑚𝐴 + 𝑚𝐵)2

𝑚𝐵
3 <  

1

250
 
322

8
=

64

125
 

Since 𝜃 ∈  [0, 𝜋], then sin 𝜃 < 0,8 . Thus, the probability of B is a black hole is the same as the 

probability of  sin 𝜃 < 0,8 for 𝜃 ∈  [0, 𝜋]. So 𝜃 is less than 53o or greater than 127o. 

 

40 
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3. Suppose a static spherical star consists of N neutral particles with radius R (see Figure 3).  

 

 
 

Figure 3 

  
with  𝟎 ≤ 𝜽 ≤ 𝝅 , 𝟎 ≤ 𝝓 ≤ 𝟐𝝅 , satisfying the following equation of states 
 

   𝑷 𝑽 = 𝑵 𝒌 
𝑻𝑹−𝑻𝟎 

ln(𝑻𝑹/𝑻𝟎)
             (1) 

 
where P and V are the pressure inside the star and the volume of the star respectively, k is the 
Boltzmann constant. 𝑻𝑹 and 𝑻𝟎 are the temperatures at the surface 𝒓 = 𝑹 and the temperature at the 
center 𝒓 = 𝟎 respectively. Assume that 𝑻𝑹 ≤  𝑻𝟎. 

 
a. Simplify the stellar equation of state (1) if ∆𝑻 = 𝑻𝑹 − 𝑻𝟎 ≈ 𝟎 (this is called ideal star) 

(Hint: Use the approximation 𝐥𝐧(𝟏 + 𝒙)  ≈ 𝒙 for small x) 

 
Suppose the star undergoes a quasi-static process, in which it may slightly contract or expand, such that 
the above stellar equation of state (1) still holds. 

 
The star satisfies first law of thermodynamics  

𝑸 =  𝚫𝑴𝒄𝟐  + 𝑾      (2) 
 

where Q, M, and W are heat, mass of the star, and work respectively, while c is the light speed in the 
vacuum and 𝚫𝑴 ≡  𝑴𝐟𝐢𝐧𝐚𝐥 −  𝑴𝐢𝐧𝐢𝐭𝐢𝐚𝐥 . 

 
In the following we assume 𝑻𝟎 to be constant, while  𝑻𝑹  ≡ 𝑻 varies. 
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b. Find the heat capacity of the star at constant volume 𝑪𝒗 in term of M and at constant pressure 𝑪𝒑 

expressed in 𝑪𝒗 and T (Hint: Use the approximation (𝟏 + 𝒙)𝒏  ≈ 𝟏 + 𝒏𝒙 for small x) 
 

Assuming that 𝑪𝒗 is constant and the gas undergoes the isobaric process so the star produces the heat 
and radiates it outside to the space.  

 
c. Find the heat produced by the isobaric process if the initial temperature and the final temperature 

are 𝑻𝒊 and 𝑻𝒇 , respectively. 

d.  
 

For the next parts, assume the star is the Sun. 
 

e. If the sunlight is monochromatic with frequency 𝟓 × 𝟏𝟎𝟏𝟒 Hz, estimate the number of photons 
radiated by the Sun per second. 
 

f. Calculate the heat capacity 𝑪𝒗 of the Sun assuming its surface temperature varies from 5500 K to 
6000 K in one second.  

 

 

 

Answer and Marking Scheme: 

a. Defining ∆𝑇 = 𝑇𝑅 −  𝑇0 and ∆𝑇 ≈ 0, we have 

𝑃 𝑉 = 𝑁 𝑘 
∆𝑇 

ln(1 + ∆𝑇/𝑇0)
 

     (3) 
using ln(1 + ∆𝑇/𝑇0)  ≈  ∆𝑇/𝑇0, we then obtain 

𝑃 𝑉 = 𝑁 𝑘 𝑇0     (4) 
 

15 

b. The internal energy of the star is 𝑈 = 𝑀𝑐2 (𝑈(𝑇) = 𝑀(𝑇)𝑐2 for ideal star). Thus, the constant 
volume heat capacity of the star has the form  

𝐶𝑣 = (
∆𝑄 

∆𝑇
)

𝑉
=  (

∆𝑀 

∆𝑇
)

𝑉
𝑐2 

      for small ∆𝑇. Then, using first law of themodynamics,  the constant pressure  
      heat capacity of the star is 

𝐶𝑝 =  (
∆𝑄 

∆𝑇
)

𝑃
=  (

∆𝑀 

∆𝑇
)

𝑉
𝑐2 + 𝑃 

∆𝑉 

∆𝑇
 =  𝐶𝑣 + 𝑃 

∆𝑉 

∆𝑇
  

      
     for small ∆𝑇. Defining ∆𝑇 = 𝑇2 − 𝑇1, then 
 

30 
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𝑃 ∆𝑉 = 𝑁 𝑘 (
𝑇1 − 𝑇0 + ∆𝑇

ln((𝑇1 + ∆𝑇)/𝑇0)
−

𝑇1 − 𝑇0 

ln(𝑇1/𝑇0)
) 

 
Using the approximation 

ln((𝑇1 + ∆𝑇)/𝑇0)  ≈ ln (
𝑇1

𝑇0
) +  

∆𝑇

𝑇1
 

(1 +
∆𝑇

𝑇1ln(𝑇1/𝑇0)
)

−1

≈  1 −
∆𝑇

𝑇1ln(𝑇1/𝑇0)
 

then we have 

𝑃 
∆𝑉 

∆𝑇
=  

𝑁 𝑘

ln(𝑇/𝑇0)
 (1 −

(𝑇 − 𝑇0)/𝑇

ln(𝑇/𝑇0)
) 

where 𝑇1 ≡ 𝑇. Finally, we obtain 
 

𝐶𝑝 =  (
∆𝑄 

∆𝑇
)

𝑃
=  (

∆𝑀 

∆𝑇
)

𝑉
𝑐2 + 𝑃 

∆𝑉 

∆𝑇
 =  𝐶𝑣 +

𝑁 𝑘

ln(𝑇/𝑇0)
 (1 −

(𝑇 − 𝑇0)/𝑇

ln(𝑇/𝑇0)
) 

 

c. Since 𝐶𝑉 is constant, the heat produced by the star is given by  
 

𝑄𝐻 =  𝐶𝑣 (𝑇𝑓 − 𝑇𝑖) + 𝑃 ∆ 𝑉 

                                                 =  𝐶𝑣  (𝑇𝑖 − 𝑇𝑓) +  𝑁 𝑘 (
𝑇𝑓 −  𝑇0

ln(𝑇𝑓/𝑇0)
 − 

𝑇𝑖 −  𝑇0

ln(𝑇𝑖/𝑇0)
) 

  

20 

d.    
 

15 

e. Energy per second radiated by the Sun 
𝐿⨀ = 𝑁ℎ𝜈      

where N is the number of photon. Thus 

𝑁 =
𝐿⨀

ℎ 𝜈
=

3.96×1026

6.6261×10−34 ×𝟓 ×𝟏𝟎𝟏𝟒 =  1.195 × 1045  photons  

 

10 

f. Energy per second radiated by the Sun is proportional to mass defect of the Sun 
𝐿⨀ =  ∆𝑀 𝑐2 

Thus, 

𝐶𝑣 =
∆𝑀 𝑐2

∆𝑇
=  

𝐿⨀

∆𝑇
=

3.96 × 1026

6000 − 5500
 J/K =  7.92 × 1023 J/K 

10 

 

 


