

Table of Constants

(All constants are in SI)

Parameter	Symbol	Value
Gravitational constant	G	$6.67 \times 10^{-11} N \ m^2 \ kg^{-2}$
Plank constant	h	6.63×10^{-34} J s
	ħ	1.05×10^{-34} J s
Speed of light	С	$3.00 \times 10^8 \ m \ s^{-1}$
Solar Mass	M_{\odot}	$1.99 \times 10^{30} kg$
Solar radius	R_{\odot}	$6.96 \times 10^8 m$
Solar luminosity	L _☉	$3.83 \times 10^{26} W$
Apparent solar magnitude (V)	m_{\odot}	-26.8
Solar constant	b_{\odot}	$1.37 \times 10^3 W m^{-2}$
Mass of the Earth	M_{\oplus}	$5.98 \times 10^{24} kg$
Radius of the Earth	R_{\oplus}	$6.38 \times 10^{6} m$
Mean density of the Earth	ρ_{\oplus}	$5 \times 10^3 \ kg \ m^{-3}$
Gravitational acceleration at sea level	g	$9.81 m s^{-2}$
Tropical year		365.24 days
Sidereal year		365.26 days
Sidereal day		86164 s
Inclination of the equator with respect to the ecliptic	ε	23.5 [°]
Parsec	рс	$3.09 \times 10^{16} m$
Light year	ly	$9.46 \times 10^{15} m$
Astronomical Unit	AU	$1.50 \times 10^{11} m$
Solar distance from the center of the Galaxy	R	$8 \times 10^{3} pc$
Hubble constant	Н	$75 \ kms^{-1} M \ pc^{-1}$
Mass of electron	m_e	$9.11 \times 10^{-31} kg$
Mass of proton	m _p	$1.67 \times 10^{-27} \ kg$
Central wavelength of V-band	λ	550 n m
Refraction of star light at horizon		34'
	π	3.1416

Useful mathematical formula: $ln(1 + x) \sim x$ for $x \to 0$

Problem 16: High Altitude Projectile (45 points)

A projectile which starts from the surface of the Earth at the sea level is launched with the initial speed of $v_{\circ} = \sqrt{(GM/R)}$ and with the projecting angle (with respect to the local horizon) of $\theta = \frac{\pi}{6}$. *M* and *R* are the mass and radius of the Earth respectively. Ignore the air resistance and rotation of the Earth.

- a) Show that the orbit of the projectile is an ellipse with a semi-major axis of a = R.
- b) Calculate the highest altitude of the projectile with respect to the Earth surface (in the unit of the Earth radius).
- c) What is the range of the projectile (distance between launching point and falling point) in the units of the earth radii?
- d) What is eccentricity (e) of this elliptical orbit?
- e) Find the time of flight for the projectile.

Problem 17: Apparent number density of stars in the Galaxy (45 points)

Let us model the number density of stars in the disk of Milky Way Galaxy with a simple exponential function of $n = n_0 \exp\left[\frac{r-R_0}{R_d}\right]$, where *r* represents the distance from the center of the Galaxy, R_0 is the distance of the Sun from the center of the Galaxy, R_d is the typical size of disk and n_0 is the stellar density of disk at the position of the Sun. An astronomer observes the center of the Galaxy within a small field of view. We take a particular type of Red giant stars (red clump) as the standard candles for the observation with approximately constant absolute magnitude of M = -0.2,

- a) Considering a limiting magnitude of m = 18 for a telescope, calculate the maximum distance that telescope can detect the red clump stars. For simplicity we ignore the presence of interstellar medium so there is no extinction.
- b) Assume an extinction of 0.7 mag/kpc for the interstellar medium. Repeat the calculation as done in the part (a) and obtain a rough number for the maximum distance these red giant stars can be observed.
- c) Give an expression for the number of these red giant stars per magnitude within a solid angle of Ω that we can observe with apparent magnitude in the range of m and $m + \Delta m$, (i.e. $\frac{\Delta N}{\Delta m}$). Red giant stars contribute fraction f of overall stars. In this part assume no extinction in the interstellar medium as part (a). Assume the size of the disk is larger than maximum observable distance.