

Solutions

Solution 1: CCD Image Processing

a) To measure instrumental magnitude we should choose an aperture. Careful investigation of the image, shows that a 5×5 pixel aperture is enough to measure m_I for all stars. m_I can be calculated using:

$$m_I = -2.5 \log(\frac{\sum_{i=1}^{N} I_{i(star)} - N\bar{I}_{Sky}}{Exp})$$

where $I_{i(star)}$ is the pixel value for each pixel inside the aperture, N is number of pixels inside the aperture, \overline{I}_{Sky} is the average of sky value per pixel taken from dark part of image and Exp is the exposure time. Table (1.4) lists values for m_I and Zmag calculated for all three identified stars.

$$S_{\rm Sky} = 4.42$$

 $N = 25$
 $Exp = 450$

ī

Table	(1.4)
-------	-------

Star	m_I	m_t	Zmag
1	-3.02	9.03	12.38
3	-5.85	6.22	12.40
4	-4.04	8.02	12.39

b) Average Zmag = 12.4

c) Following part (a) for stars 2 and 5, we can calculate true magnitudes (m_t) for these stars

Table (1	.5)
----------	-----

Star	m_I	m_t
2	-2.13	9.93
5	-0.66	11.4

d) Pixel scale for this CCD is calculated as

$$p = \frac{pixel \ size}{focal \ length} \times \frac{180 \times 3600}{\pi}$$

= 4.30 "

e) Average sky brightness:

$$m_{sky} = -2.5 \log \frac{\bar{I}_{Sky}}{(Exp)(p)^2} + Zmag$$

= 20.6

f) To estimate astronomical seeing, first we plot pixel values in x or y direction for one of the bright stars in the image.
As plot (1) shows, the FWHM of pixel values which is plotted for star 3, is 1 pixel , hence astronomical seeing is equal to

16 5 6 5 1

CCD Image Problem Marking Scheme

Part	Tot. Pts.	Details	Max.	Explanation
а	10	Relation m _I	2 6	Each value :+2 \overline{I}_{skv} (within calculation) : +2
a	10	\overline{I}_{sky}	2	m_I relation (in calculation) +2
b	10	Z_{mag}	10	$3Z_{mag}$ and average , for each less: - 2
с	10	m_t	10	For each one:+ 5, for each numerical mistake: -2
d	10	P (pixel Scale)	10	
	10	Relation of m_{sky}	5	
e	10	Value of m_{sky}	5	
f	10	Seeing	10	Seeing: +4, Gaussian profile: +3, FWHM: +3

Solution 2: Venus

a) The ∠*SVE* angle should be calculated from the phase of Venus. Figure 2.1 shows that projected area of Venus disk which is illuminated by the Sun is

$$\frac{\pi r^2}{2} + \frac{\pi r r'}{2}$$

where

$$r' = rcos(\angle SVE)$$

Then,

$$Phase = \left(\frac{\frac{\pi r^2}{2} + \frac{\pi r^2 \cos(\angle SVE)}{2}}{\pi r^2}\right) \times 100 = \frac{100}{2}(1 + \cos(\angle SVE)) = 100\cos^2(\frac{\angle SVE}{2})$$

The angle $\angle SVE$ is calculated and written in table 2.2, column 2.

Figure 2.1

b) As in figure 2.1, in SEV triangle we have,

$$\frac{r_e}{\sin\left(\angle SVE\right)} = \frac{r_v}{\sin\left(\angle SEV\right)}$$
$$r_v = r_e \frac{\sin\left(\angle SEV\right)}{\sin\left(\angle SVE\right)}$$

where r_e and $\angle SEV$ (elongation) is given in table 2.1 then, r_v for all observing dates is calculated and written in table 2.2 column 3.

C)

d) According to the obtained values written in table 2.2 column 3,

$$r_v^{max} = 0.728 AU$$
$$r_v^{min} = 0.718 AU$$

e) Semi-major axis is

$$a = \frac{(r_v^{max} + r_v^{min})}{2} = 0.723 \, AU$$

f) Eccentricity could be calculated from both of aphelion and perihelion distances as

$$e = \frac{r_v^{max} - r_v^{min}}{2a} = 6.92 \times 10^{-3}$$

Column 1	Column 2	Column 3
Date	SVE (°)	Sun - Venus Distance (AU)
2008-Sep-20	39.83	0.726
2008-Oct-10	47.16	0.728
2008-Oct-20	50.80	0.728
2008-Oct-30	54.55	0.728
2008-Nov-09	58.26	0.728
2008-Nov-19	62.10	0.728
2008-Nov-29	66.17	0.727
2008-Dec-19	74.81	0.725
2008-Dec-29	79.63	0.723
2009-Jan-18	90.57	0.721
2009-Feb-07	104.83	0.719
2009-Feb-17	114.08	0.718
2009-Feb-27	125.59	0.719
2009-Mar-19	157.52	0.721

Table 2.2

Venus Problem Marking Scheme

part	Tot. Pts	Details	Max
	16	Angle derivation	6
а	10	Calculation of ∠SVE	10
b	14	Relation	4
U	14	Sun-Venus distance	10
с	6	Plotting Sun-Venus distance	6
d	8	Perihelion	4
u	0	Aphelion	4
	8	a (relation)	4
е	0	a (value)	4
f	8	e (relation)	4
T 8		e (value)	4

Note: reported numbers in table 2 are not acceptable if they are out of 0.75 and 1.25 times of designer answer.