Solutions

Solution 1: CCD Image Processing

a) To measure instrumental magnitude we should choose an aperture. Careful investigation of the image, shows that a 5×5 pixel aperture is enough to measure m_{I} for all stars. m_{I} can be calculated using:

$$
m_{I}=-2.5 \log \left(\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{I}_{\mathrm{i}(\text { star })}-\mathrm{N} \overline{\mathrm{I}}_{\text {Sky }}}{\operatorname{Exp}}\right)
$$

where $I_{i(s t a r)}$ is the pixel value for each pixel inside the aperture, N is number of pixels inside the aperture, $\overline{\mathrm{I}}_{\text {Sky }}$ is the average of sky value per pixel taken from dark part of image and Exp is the exposure time. Table (1.4) lists values for m_{I} and Z mag calculated for all three identified stars.

$$
\begin{gathered}
\overline{\mathrm{I}}_{\text {Sky }}=4.42 \\
N=25 \\
\text { Exp }=450 \\
\text { Table (1.4) }
\end{gathered}
$$

Star	m_{I}	m_{t}	Zmag
1	-3.02	9.03	12.38
3	-5.85	6.22	12.40
4	-4.04	8.02	12.39

b) Average $\mathrm{Zmag}=12.4$
c) Following part (a) for stars 2 and 5 , we can calculate true magnitudes $\left(m_{t}\right)$ for these stars

Table (1.5)

Star	m_{I}	m_{t}
2	-2.13	9.93
5	-0.66	11.4

d) Pixel scale for this CCD is calculated as

$$
\begin{gathered}
p=\frac{\text { pixel size }}{\text { focal length }} \times \frac{180 \times 3600}{\pi} \\
=4.30^{\prime \prime}
\end{gathered}
$$

e) Average sky brightness:

$$
\begin{gathered}
m_{s k y}=-2.5 \log \frac{\overline{\mathrm{I}}_{\text {Sky }}}{(E x p)(p)^{2}}+Z m a g \\
=20.6
\end{gathered}
$$

f) To estimate astronomical seeing, first we plot pixel values in x or y direction for one of the bright stars in the image. As plot (1) shows, the FWHM of pixel values which is plotted for star 3 , is 1 pixel, hence astronomical seeing is equal to

$$
\text { seeing } \cong 4 "
$$

Plot (1)

CCD Image Problem Marking Scheme

Part	Tot. Pts.	Details	Max.	Explanation
a	10	Relation	2	$\begin{gathered} \text { Each value :+2 } \\ \bar{I}_{s k y}(\text { within calculation }):+2 \\ m_{I} \text { relation (in calculation) }+2 \end{gathered}$
		m_{I}	6	
		$\bar{I}_{s k y}$	2	
b	10	$Z_{\text {mag }}$	10	$3 Z_{\text {mag }}$ and average, for each less: - 2
c	10	m_{t}	10	For each one:+ 5, for each numerical mistake: -2
d	10	P (pixel Scale)	10	
e	10	Relation of $m_{s k y}$	5	
		Value of $m_{s k y}$	5	
f	10	Seeing	10	Seeing: +4, Gaussian profile: +3, FWHM: +3

Solution 2: Venus

a) The $\angle S V E$ angle should be calculated from the phase of Venus. Figure 2.1 shows that projected area of Venus disk which is illuminated by the Sun is

$$
\frac{\pi r^{2}}{2}+\frac{\pi r r^{\prime}}{2}
$$

where

$$
r^{\prime}=r \cos (\angle S V E)
$$

Then,

$$
\text { Phase }=\left(\frac{\frac{\pi r^{2}}{2}+\frac{\pi r^{2} \cos (\angle S V E)}{2}}{\pi r^{2}}\right) \times 100=\frac{100}{2}(1+\cos (\angle S V E))=100 \cos ^{2}\left(\frac{\angle S V E}{2}\right)
$$

The angle $\angle S V E$ is calculated and written in table 2.2, column 2.

Figure 2.1
b) As in figure 2.1, in $S E V$ triangle we have,

$$
\begin{gathered}
\frac{r_{e}}{\sin (\angle S V E)}=\frac{r_{v}}{\sin (\angle S E V)} \\
r_{v}=r_{e} \frac{\sin (\angle S E V)}{\sin (\angle S V E)}
\end{gathered}
$$

where r_{e} and $\angle S E V$ (elongation) is given in table 2.1 then, r_{v} for all observing dates is calculated and written in table 2.2 column 3.
c)

d) According to the obtained values written in table 2.2 column 3 ,

$$
\begin{aligned}
r_{v}^{\max } & =0.728 A U \\
r_{v}^{\min } & =0.718 A U
\end{aligned}
$$

e) Semi-major axis is

$$
a=\frac{\left(r_{v}^{\max }+r_{v}^{\min }\right)}{2}=0.723 \mathrm{AU}
$$

f) Eccentricity could be calculated from both of aphelion and perihelion distances as

$$
e=\frac{r_{v}^{\max }-r_{v}^{\min }}{2 a}=6.92 \times 10^{-3}
$$

Table 2.2

Column 1	Column 2	Column 3
Date	SVE $\left({ }^{\circ}\right)$	Sun - Venus Distance (AU)
2008-Sep-20	39.83	0.726
2008-Oct-10	47.16	0.728
2008-Oct-20	50.80	0.728
2008-Oct-30	54.55	0.728
2008-Nov-09	58.26	0.728
2008-Nov-19	62.10	0.728
2008-Nov-29	66.17	0.727
2008-Dec-19	74.81	0.725
2008-Dec-29	79.63	0.723
2009-Jan-18	90.57	0.721
2009-Feb-07	104.83	0.719
2009-Feb-17	114.08	0.718
2009-Feb-27	125.59	0.719
2009-Mar-19	157.52	0.721

Venus Problem Marking Scheme

part	Tot. Pts	Details	Max
a		Angle derivation	6
	Calculation of $\angle S V E$	10	
b	14	Relation	4
		Sun-Venus distance	10
d	8	Plotting Sun-Venus distance	6
e	8	Perihelion	4
f	Aphelion	4	
	8	a (relation)	4
	a (value)	4	

Note: reported numbers in table 2 are not acceptable if they are out of 0.75 and 1.25 times of designer answer.

