THEORETICAL PART 2

1. The coordinates of the components of Visual Binary Star μ Sco on August 22, 2008 are given in the table below

	α (RA)	$\delta(\mathrm{Dec})$
μ Sco 1 (primary)	20 ^h 17 ^m 38 ^s .90	-12° 30' 30"
μ Sco 2 (secondary)	20 ^h 18 ^m 03 ^s .30	-12° 32' 41"

The stars are observed using Zeiss refractor telescope at the Bosscha Observatory with aperture and focal length are 600 mm and 10,780 mm, respectively. The telescope is equipped with 765 \times 510 pixels CCD camera. The pixel size of the chip is 9 μ m \times 9 μ m.

- a. Can both components of the binary be inside the frame? ("YES" or "NO", show it in your computation!)
- b. What is the position angle of the secondary star, with respect to the North?

Solution:

a. Chip size:
$$(9\times765) \mu m \times (9\times510) \mu m = 6885 \mu m \times 4590 \mu m$$

$$\approx 6.9 \text{ mm} \times 4.6 \text{ mm}$$
 (10%)

For Zeiss telescope: FL = 10780 mm

Pixel size (arc sec) =
$$206265 \times \text{pixel size (}\mu\text{m})/(1000 \times \text{focal length (}m\text{m}))$$
" (10%)

$$= 206265 \times 9/(1000 \times 10780) = 0.1722$$
 (10%)

FOV CCD chip =
$$(765 \times 510) \times 0.1722 = 131.7330 \times 87.8220$$
"

$$= 2.1956 \times 1.4637$$
 (10%)

For μ Sco 1 : $\alpha_1 = 20^h 17^m 38^s .90 = 20.2941^h = 304.4121^\circ$

$$\delta_1 = -12^{\circ} 30' 30'' = -12.5083^{\circ}$$

For μ Sco 2: $\alpha_2 = 20^h 18^m 03^s .30 = 20.3009^h = 304.5138^\circ$

$$\delta_2 = -12^{\circ} 32' 41'' = -12.5447^{\circ}$$

Let the angular separation between the stars be γ

Use spherical trigonometry:

$$\cos \gamma = \cos(90^{\circ} - \delta_{1})\cos(90^{\circ} - \delta_{2}) + \sin(90^{\circ} - \delta_{1})\sin(90^{\circ} - \delta_{2})\cos(\alpha_{2} - \alpha_{1})$$
 (10%)

$$\cos \gamma = \cos(90^{\circ} - (-12^{\circ}.5083))\cos(90^{\circ} - (-12^{\circ}.5447)) +$$

$$\sin(90^{\circ} - (-12^{\circ}.5083))\sin(90^{\circ} - (-12^{\circ}.5447))\cos(304.5138^{\circ} - 304.4121^{\circ})$$

$$\cos \gamma = \cos(102.5083^{\circ})\cos(102.5447^{\circ}) +$$

$$\sin(102.5083^{\circ})\sin(102.5447^{\circ})\cos(0.1017^{\circ}) = 0.999998298$$
 (10%)

b. Position angle (S_1):

$$\frac{\sin(\alpha_2 - \alpha_1)}{\sin \gamma} = \frac{\sin S_1}{\sin(90^0 - \delta_2)}$$

$$\sin S_1 = \frac{\sin(0^{\circ}6'6'')\sin(102^{\circ}32'41'')}{\sin(6'.1020)} = 0.9388$$

$$S_1 = 69.8535^{\circ} \text{ or } 110.1466^{\circ}$$
 (20%)

From the figure above, we found that the correct position angle is 110.15° (10%)(± 6° is full mark)

- 2. A UBV photometric (UBV Johnson's) observation of a star gives U = 8.15, B = 8.50, and V = 8.14. Based on the spectral class, one gets the intrinsic color $(U - B)_0 = -0.45$. If the star is known to have radius of 2.3 R_{\odot} , absolute bolometric magnitude of -0.25, and bolometric correction (BC) of -0.15, determine:
 - a. the intrinsic magnitudes U, B, and V of the star (take, for the typical interstellar matters, the ratio of total to selective extinction R = 3.2),
 - b. the effective temperature of the star,
 - c. the distance to the star.

Solution:

$$U = 8.15$$
, $B = 8.50$, and $V = 8.14$.
 $(U - B)_0 = -0.45$. $R = 2.3 R_0 = 1.60 \times 10^{11} \text{ cm}$,

$$M_{bol} = -0.25$$
 , $BC = -0.15$

a)
$$U - B = 8.15 - 8.50 = -0.35$$

The color excess for *U-B*:

$$E(U-B) = (U-B) - (U-B)_0 = -0.35 - (-0.45) = 0.10$$

The relation between color excess of U - B and of B - V:

$$E(U-B) = 0.72 \ E(B-V) \implies E(B-V) = 0.10/0.72 = 0.14$$
 (15%)

Let A_{ν} be the interstellar extinction and R=3.2, then

$$A_v = 3.2 E(B-V) = 3.2 (0.14) = 0.45$$

$$V - V_0 = A_v$$
 \Longrightarrow $V_0 = V - A_v = 8.14 - 0.45 = 7.69$

$$E(B-V) = (B-V) - (B-V)_0 \iff (B-V)_0 = (B-V) - E(B-V)$$

$$= (8.50 - 8.14) - 0.14 = 0.22$$
 (15%)

$$(B - V)_0 = B_0 - V_0 = 0.22$$
 \Longrightarrow $B_0 = 0.22 + V_0 = 0.22 + 7.69 = 7.91$ (10%)

$$(U-B)_0 = U_0 - B_0 = -0.45 \implies U_0 = B_0 - 0.45 = 7.91 - 0.45 = 7.46$$
 (10%)

b) Luminosity - absolute magnitude relation:

$$M_{bol} - M_{bol} = -2.5 \log L/L_{\odot}$$
 $\Longrightarrow L/L_{\odot} = 10^{-(M_{bol} - M_{bol})/2.5}$

$$= 10^{-(-0.25 - 4.75)/2.5}$$

$$= 100$$
 (10%)

 $L = 100 L_{\odot} = 3.90 \text{ x } 10^{35} \text{ erg/det}$

 $L = 4\pi\sigma R^2 T_{ef}^4$

$$T_{ef} = \left(\frac{L}{4\pi\sigma R^2}\right)^{1/4} = \left(\frac{3.90 \times 10^{35}}{4\pi (5.67 \times 10^{-5})(1.60 \times 10^{11})^2}\right)^{1/4} = 12\ 092\ \text{K}$$
 (15%)

c)
$$M_v - M_{bol} = BC \implies M_v = M_{bol} + BC = -0.25 - 0.15 = -0.40$$
 (10%)

 $m_v - M_v = -5 + 5 \log d + A_v \implies 5 \log d = m_v - M_v + 5 - A_v$

$$= 8.14 + 0.40 + 5 - 0.45 = 13.09$$

$$d = 10^{13.09/5} = 10^{2.62} = 414.9 \text{ pc}$$
 (15%)

3. Measurement of the cosmic microwave background radiation (CMB) shows that its temperature is practically the same at every point in the sky to a very high degree of accuracy. Let us assume that light emitted at the moment of recombination ($T_r \approx 3000 \text{ K}$, $t_r \approx 300000 \text{ years}$) is only reaching us now ($T_o \approx 3 \text{ K}$, $t_o \approx 1.5 \text{ x } 10^{10} \text{ years}$). Scale factor S is defined as such $S_0 = S(t = t_o) = 1$ and $S_t = S(t < t_o) < 1$. Note that the radiation dominated period was between the time when the inflation stopped

($t = 10^{-32}$ seconds) and the time when the recombination took place, while the matter dominated period started at the recombination time. During the radiation dominated period S is proportional to $t^{1/2}$, while during the matter dominated period S is proportional to $t^{3/2}$.

- a. Estimate the horizon distances when recombination took place. Assume that temperature T is proportional to 1/S, where S is a scale factor of the size of the Universe.
- b. Consider two objects which are currently observed at a separation angle $\alpha = 5^{\circ}$. Could the two objects communicate each other using photon? (Answer with "YES" or "NO" and give the reason mathematically)
- c. Estimate the size of our Universe at the end of inflation period.

Solution:

a) $X_0 = d\theta_0$

where
$$d = c(t_o - t_r) \approx ct_o t_o >> t_r$$
.

Scale factor S is defined as such $S_0 = S(t = t_o) = 1$ and $S_t = S(t < t_o) < 1$.

Maximum distance between objects at the time of recombination

$$X_r = S_r X_o = S_r \theta_o t_o c$$

On the other hand $X_r = ct_r$, such that

$$ct_r = S_r \theta_0 t_o c$$
 or $\theta_o = \frac{t_r}{S_r t_o}$ (20%)

From
$$T \propto \frac{1}{S}$$
 then $\frac{S_o}{S_r} = \frac{T_r}{T_o}$ and $\frac{1}{S_r} = \frac{T_r}{T_o}$.

So,
$$\theta_o = \frac{t_r T_r}{t_o T_o} = \frac{(3 \times 10^5 \text{ yr})(3000 \text{ K})}{(1.5 \times 10^{10} \text{ yr})(3 \text{ K})} = 2 \times 10^{-2} \text{ rad} = 1.14^\circ$$
 (20%)

b) NO, because
$$\alpha > \theta_o$$
 (20%)

c)

From the time at recombination (t_r) to the current time (t_0) $S \propto t^{2/3}$, we derive

$$\frac{S_o}{S_r} = \left(\frac{t_o}{t_r}\right) = \left(\frac{1.5 \times 10^{10} \ years}{3 \times 10^5 \ years}\right)^{2/3} = 1.36 \times 10^3$$

The size of our universe at t_r is

$$\frac{1.5 \times 10^{10} light \ years}{1.36 \times 10^{3}} = 1.11 \times 10^{7} light \ years$$
 (20%)

When the inflation stopped, the Universe was radiation dominated

$$(t_r = 3 \times 10^5 \text{ years to } t_i = 10^{-32} \text{ s})$$
, we get

$$\frac{S_r}{S_i} = \left(\frac{t_r}{t_i}\right)^{1/2} = \left(\frac{9.46 \times 10^{12} \,\mathrm{s}}{10^{-32} \,\mathrm{s}}\right)^{1/2} = 3.08 \times 10^{22} \,\mathrm{.}$$

The size of universe at the end of the inflation period was

$$\frac{1.1 \times 10^7 \, light \ years}{3.08 \times 10^{22}} = 3.57 \times 10^{-16} \, light \ years \approx 3 \, m$$
 (20%)