Practical round. Basic grading criteria

$\alpha \beta-7$. Fireball.

7.1. Marking points I, II, III correctly. Marking and drawing the fireball trajectory correctly - 3 pts.
7.2. Getting longitude and latitude of Points A, B correctly. Getting distance with correct scaling over longitude and latitude -2 pts .
7.3. Getting the right geometry. Final values of heights within 10 percent of error -3 pts.
7.4. Getting the right geometry. Final values of the correct position within 10 percent of error -2 pts.
α-8. Moon.
8.1. April $(11 \pm 1)-2$ pts, ± 2 days -1 pt .
8.2. $\operatorname{Mrch}(27 \pm 1)-2$ pts, ± 2 days -1 pt .
8.3. Similar to the Figure in the answer sheet $-2 \mathrm{pts}, \pm 10$ degrees -1 pt .
8.4. Correct ratio $\pm 0.01-2$ pts, $\pm 0.04-1$ pts.
8.5. Similar to the figure in the solutions -2 pts , radius less than $1 \mathrm{~cm}-1 \mathrm{pts}$.

β-8. Clusters.

8.1. (2.0 point),
correct plot with main sequence line : 2.0 point, plots without main sequence line : deduction of 0.1 point.
8.2. (2.0 point),
correct plot with different marks for each cluster : 2.0 point, plots without identifying each cluster : deduction of 0.1 point.
8.3. (2.0 point),
$\mathrm{E}(\mathrm{B}-\mathrm{V}) \sim 0.06 \pm 0.02$, get 2.0 point (± 0.03, get 1.5 point; ± 0.04, get 1.0 point; ± 0.05, get 0.5 point).
8.4. (2.0 point),
$\Delta \mathrm{m}_{\mathbf{V}} \sim-6.3 \pm 0.2 \rightarrow$ distance $\sim 741 \mathrm{pc}$
Correct method to get distance with wrong $\Delta \mathrm{m}_{\mathbf{V}}$ values : deduction of 0.2 point
8.5. . (1.8 point),
only (B-V) value for main sequence turn off stars of each cluster (Hyades and NGC 2682) : get 0.9 point, only absolute magnitude of it get 0.9.
8.6. (0.2 point) NGC2682.

XVII Международная астрономическая олимпиада XVII International Astronomy Olympiad

Корея, Кванджу

Practical round. Sketches for solutions

$\alpha \beta-7$. Fireball.

7.1. Observing points I, II and III are plotted as in the figure (point II is not correctly plotted below, but when plotted correctly on the gridded paper, the answer becomes clear). Then by drawing only using azimuthal angles, projected points A and B can be obtained, as intersecting points.

7.2. Read off from the grid, and coordinates $\left(\boldsymbol{\lambda}_{\mathbf{A}}, \boldsymbol{\varphi}_{\mathbf{A}}, \boldsymbol{\lambda}_{\mathbf{B}}, \boldsymbol{\varphi}_{\mathbf{B}}\right)$ can be easily obtained as $\left(127.60^{\circ} \mathrm{E}\right.$, $36.47^{\circ} \mathrm{N}$) for point A, and $\left(129.45^{\circ} \mathrm{E}, 36.10^{\circ} \mathrm{N}\right)$ for point B .

Then one should first convert the differences in angle into distance, and then use Pythagorean principle, such that

$$
\left.\mathrm{L}=[\{(129.45-127.60) \times 110) \times(4.8 / 5.8)\}^{2}+\{(36.47-36.10) \times 110\}^{2}\right]^{1 / 2}
$$

where the conversion factor 4.8/5.8 for longitudinal distance per one degree longitude can be read off from the correctly scaled gridded paper or using $\sim \sin \left(90^{\circ}-36^{\circ}\right)$, and one can use $110 \mathrm{~km} /$ (latitude degree). Then $\mathrm{L}=173.5 \mathrm{~km}$.
7.3. Once points I, A \& B are correctly marked, the distance $\mathbf{I}_{\mathbf{A}}$ and $\mathbf{I}_{\mathbf{B}}$ can be calculated using Pythagorean principle just as in problem 2, which are 91.1 km and 200.8 km . And using altitudes observed from point I, one can get

$$
\mathbf{h}_{\mathrm{A}}=91.1 \mathrm{~km} \times \tan 35^{\circ}=63.8 \mathrm{~km}, \text { and } \mathbf{h}_{\mathbf{B}}=200.8 \mathrm{~km} \times \tan 10^{\circ}=35.4 \mathrm{~km} .
$$

7.4. If the fireball hits the surface, the full projected trajectory from point \mathbf{A} to the hitting point (let's call it \mathbf{C}), $\mathbf{A C}$, is the multiple of the projected distance $\mathbf{A B}$ by a factor of $63.8 /(63.8-35.4)=2.2465$. The same multiplication factor can be used to get the trajectory on the longitude and latitude separately, such that

$$
\begin{aligned}
\lambda_{\mathrm{C}}=127.6+2.2465(129.45-127.6) & =131.76^{\circ} \\
\varphi_{\mathrm{C}}=36.49+2.2465(36.11-36.49) & =35.64^{\circ}
\end{aligned}
$$

point	longitude λ	latitude φ	L (km)	$\mathrm{h}_{\mathbf{A}}$ (km)	$\mathrm{h}_{\mathbf{B}}$ (km)	You may find the meteorite at	
	longitude $\lambda_{\mathbf{C}}$	latitude $\varphi_{\mathbf{C}}$					
\mathbf{A}	$127.60^{\circ} \mathrm{E}$	$+36.49^{\circ} \mathrm{N}$	173.5	63.8 km	35.4 km	$131.76^{\circ} \mathrm{E}$	$35.64^{\circ} \mathrm{N}$
B	$129.45^{\circ} \mathrm{E}$	$+36.11^{\circ} \mathrm{N}$					

$\alpha-8$. Moon.

Date	Culmination of Moon	$\Delta \mathrm{T}$ (min)	Date	Culmination of Moon	$\Delta \mathrm{T}$ (min)	Date	Culmination of Moon	$\Delta \mathrm{T}$ (min)
Mar 2	1940	51	April 1	2002	50	May 1	2020	50
3	2031	51	2	2052	50	2	2110	52
4	2122	52	3	2142	51	3	2202	55
5	2214	51	4	2233	52	4	2257	59
6	2305	51	5	2325	54	5	2356	61
7	2356	52	6	-		6	-	057
8	-		7	019	57	7	67	65
9	048	53	8	116	57	8	201	62
10	141	55	9	216	60	9	303	61
11	236	56	10	317	61	10	404	56
12	332	59	11	419	62	11	500	52
13	431	59	12	519	60	12	552	48
14	530	59	13	615	56	13	640	46
15	629	57	14	708	53	14	726	43
16	726	54	15	757	49	15	809	43
17	820	51	16	843	46	16	852	43
18	911	48	17	928	45	17	935	43
19	959	46	18	1010	43	18	1018	42
20	1045	44	19	1053	46	19	1102	46
21	1129	43	20	1136	43	20	1148	48
22	1212	43	21	1219	45	21	1236	48
23	1255	43	22	1304	47	22	1324	50
24	1338	44	23	1351	48	23	1414	50
25	1422	46	24	1439	48	24	1503	49
26	1508	46	25	1527	50	25	1552	48
27	1554	49	26	1617	50	26	1640	47
28	1643	49	27	1706	49	27	1727	47
29	1732	50	28	1755	48	28	1814	48
30	1822	50	29	1843	48	29	1902	49
31	1912	50	30	1931	49	30	1951	

8.1. In the table above, we compute the difference in culmination times of two neighboring days. On average it is about 48 minutes, but differs every day due to the elliptical nature of the lunar orbit. Figure 1 shows the variation of culmination time for the three months. When the moon is at the perigee, the difference in culmination is the largest. Therefore, the moon is at the perigee on Mar 13, April 11, May 7. Therefore, the answer is 11 .

Fig 1. Culmination time difference in minutes.
On the dates marked by the red arrows the moon is at perigee.
8.2. 14 days after Mar 13 (or 14 days before April 11) the moon is located on the opposite side of the perigee. Therefore, the answer is Mar 27.
8.3. There are 8 days between April 11 and April 19, which correspond to $8 / 27.3$ of the lunar orbital period. The angle from the perigee is 105.5 degrees. There are 12 days corresponding to $12 / 27.3 \times 360=158.2$ degrees. The locations are indicated in Fig. 2. (See just below.)

8.4. July 1 is 54 days after May $7^{\text {th }}$, where the Moon is at perigee. The Sun is near aphelion, whereas the Moon is near perigee. Therefore the sun's apparent angular diameter is $31^{\prime} 59^{\prime \prime} \times 0.983=31^{\prime} 27^{\prime \prime}$. The real diameter of the moon is $\mathrm{D}=3476.4 \mathrm{~km}$. The distance is $384400^{\prime \prime} \times(1-0.055)=362900 \mathrm{~km}$. Hence the apparent angular size is $3476 / 362900 \times 180 / 3.14 \times 60=32^{\prime} 54^{\prime \prime}$. Therefore, the moon appears 1.05 larger than the Sun.
8.5. The approximate size of the geostationary orbit may be found using the Kepler's III law, with the additional fact that geostationary orbit has 27.3 times shorter period. The ratio or the orbital sizes is $27.3^{2 / 3}$, or approximately 9 . The answer is shown in Fig. 2.
β-8. Clusters. All necessary data may be taken from tables and the Hertzsprung-Russell diagram.
8.1. Color-Magnitude Diagrams (blue dots and line for Hyades cluster, red dots and line for NGC2682).

8.2. Color-Color Diagram (blue dots and line for Hyades cluster, red dots and line for NGC6282):

8.3. On the color-color diagram (problem 8-2), the reddening line is $E(U-B) / E(B-V)=0.67$. However, data points for two clusters are not sufficient to get such detailed reddening, we accept the difference ($\mathrm{B}-\mathrm{V}$) between two main-sequence lines on the color-color diagram as reddening $\mathrm{E}(\mathrm{B}-\mathrm{V})$, which is $\mathrm{E}(\mathrm{B}-\mathrm{V}) \sim 0.06$ (+0.02 acceptable).
8.4. On the color-magnitude diagrams in Problem 8-1, the magnitude difference Δm_{V} between the main sequence line of Hyades and the main sequence line of NGC 2686, which is $\Delta \mathrm{m}_{\mathbf{V}}=-6.3$ (± 0.2 acceptable).

$$
\begin{gathered}
\mathrm{m}_{\mathrm{V}}(\text { Hyades })-\mathrm{m}_{\mathrm{V}}(\text { NGC } 2682)=5 \log 45-5 \operatorname{logd}-3 \cdot \mathrm{E}(\mathrm{~B}-\mathrm{V}), \\
-6.3=5 \log 45-5 \operatorname{logd}-0.18, \\
\mathrm{~d}=741 \mathrm{pc}(660 \mathrm{pc}-851 \mathrm{pc} ; \text { acceptable }) .
\end{gathered}
$$

8.5. Find the absolute magnitude and colour index ($B-V$) of the main sequence turn-off star in each cluster, approximately.

On the color-magnitude diagram of Hyades, MT (main sequence turn off point) is (B-V) ~ 0.12 (acceptable ± 0.02) and $m_{v} \sim 4.3$ (acceptable ± 0.2).

$$
\mathrm{m}_{\mathbf{v}}-\mathrm{M}_{\mathbf{v}}=5 \cdot \log 45-5-0.18 \Rightarrow=\mathrm{M}_{\mathbf{v}}=0.75 \text { (acceptable } \pm 0.2 \text {). }
$$

Ans: $(\mathrm{B}-\mathrm{V})=(\mathrm{B}-\mathrm{V}) \mathrm{o}=0.12, \mathrm{M}_{\mathrm{V}}=0.75$.
On the color-magnitude diagram of NGC2682, MT (main sequence turn off point) is (B-V) ~ $0.42(\pm 0.02$ acceptable) and $\mathrm{m}_{\mathrm{v}}=12.6$ (± 0.2 acceptable).
Intrinsic color of the turn off star is $(B-V) o=(B-V)-E(B-V)=0.36($ acceptable : 0.32-0.40)

$$
===>\mathrm{m}_{\mathrm{V}}-\mathrm{M}_{\mathrm{v}}=5 \cdot \operatorname{logd}-5+\mathrm{A}=\Rightarrow \quad \mathrm{Mv}=3.41 \text { (acceptable } 3.09-3.73 \text {). }
$$

Ans : $(\mathrm{B}-\mathrm{V})=0.42,(\mathrm{~B}-\mathrm{V}) \mathrm{o}=0.36 \mathrm{M}_{\mathrm{V}}=3.41$
8.6. NGC2682.

